Skip to main content

Dosimetry Methods

  • Reference work entry
Handbook of Nuclear Chemistry

Abstract

Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 3,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah AA, Miller A (1996) Radiat Phys Chem 47:611

    CAS  Google Scholar 

  • ANSI (1993) Personnel dosimetry performance; criteria for testing. ANSI standard no. N13.11–1993, American National Standard Institute, New York

    Google Scholar 

  • ANSI (1996) Method for evaluation films for monitoring x-rays and ganna rays having energies up to 3 million electron vpolts. ANSI/NAPM standard no. IT2.10–1996, American National Standards Institute, New York

    Google Scholar 

  • Artandi C, Stonehill AA (1958) Nucleonics 16:118

    CAS  Google Scholar 

  • ASTM (1995) Standard pracrice for using the Fricke reference standard dosimetry system. ASTM standard E 1026-1995, American Society for Testing and Materials, http://www.astm.org)

  • ASTM (2004) Standard pracrice for using of a LiF photo-fluorescent film dosimetry system. ASTM standard E 2304-2004, American Society for Testing and Materials, http://www.astm.org)

  • Attix FH (1959) Nucleonics 17(4):142

    CAS  Google Scholar 

  • Baeyens B, Coninkx F, Maier P, Schonbacher H (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, 1984. STI/PUB/671, International Atomic Energy Agency, Vienna, p 275

    Google Scholar 

  • Barquero R, Mendez R, Iniguez MP, Vega HR, Voltchev M (2002) Radiat Prot Dosim 101:493

    CAS  Google Scholar 

  • Barrett JH (1982) Int J Appl Radiat Isot 33:1177

    CAS  Google Scholar 

  • Barrett JH, Sharpe PHG, Stuart IP (1980) Part 1. NPL report RS 49. National Physical Laboratory, Teddington

    Google Scholar 

  • Bartolotta A, Caccia B, Indovina PL, Onori S, Rosati A (1985) High-dose dosimetry. In: Symposium proceedings, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 245

    Google Scholar 

  • Becker K (1973) Solid-state dogimetry, CRC press, Boca Rason, Florida.

    Google Scholar 

  • Bewley DK (1969) Ann NY Acad Sci 161:94

    CAS  Google Scholar 

  • Bewley DK, Mccullough EC, Page BC, Sakata S (1972) Neutron dosimetry in biology and medicine. In: Proceedings of first symposium on neutron dosimetry, Munich/Neuherberg, p 159

    Google Scholar 

  • Bielski B, SHLUE GG, BAJUK S (1980) J Phys Chem 84:830

    CAS  Google Scholar 

  • Biramontri S, Haneda N, Tachibana H, Kojima T (1996) Radiat Phys Chem 48:105

    CAS  Google Scholar 

  • Bishop WP, Humpherys KC, Randike PT (1973) Rev Sci Instrum 44:443

    CAS  Google Scholar 

  • BjÄrngard B (1963) Aktiebolaget Atomenergie report AE-118, Stockholm, Sweden

    Google Scholar 

  • Bjergbakke E (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, part 2. Marcel Dekker, New York, p 323

    Google Scholar 

  • Blaedel WJ, Petitjean DL (1956) In: Berl WG (ed) Physical methods in chemical analysis, vol III. Academic, New York, p 107

    Google Scholar 

  • Bobrowski K, Dzierzkowska G, Grodkowski J, Stuglik Z, Zagorski ZP, McLaughlin WL (1985) J Phys Chem 89:4358

    CAS  Google Scholar 

  • Boetter-Jensen L, McKeever SWS, Wintle AG (2003) Optically stimulated luminescence dosimetry, Elsevier.

    Google Scholar 

  • Bradshaw WW, Cadena DC, Crawford EW, Spetzler HAW (1962) Radiat Res 17:11

    CAS  Google Scholar 

  • Brady JM, Aaerestad NO, Swartz HM (1968) Health Phys 15:43

    CAS  Google Scholar 

  • Brynjolfsson A, Holm NW, ThÄrup G, Sehested K (1963) Industrial uses of large radiation sources. In: Symposium proceedings, vol II, International Atomic Energy Agency, Vienna, p 281

    Google Scholar 

  • Burgkhardt B, Singh D, Piesch E (1977) Nucl Instrum Methods 141:363

    CAS  Google Scholar 

  • Burns DT, Morris WT (1988) High-dose calorimetric standard for electron beams. NPL Report RS (EXT) 101, National Physical Laboratory, Teddington

    Google Scholar 

  • Butson MJ, Rozenfeld A, Mathur JN, Carolan M, Wong TPY, Metcalfe PE (1996) Med Phys 23:655

    CAS  Google Scholar 

  • Calvet A, Prat H (1956) Microcalorimetrie. Masson et Cie, Paris

    Google Scholar 

  • Cameron JR (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, chapter C. Marcel Dekker, New York, p 410

    Google Scholar 

  • Cameron JR, Suntharalingam N, Kenney GN (1968) Thermoluminescent dosimetry. University of Wisconsin Press, Madison

    Google Scholar 

  • Chadwick KH (1969) Atompraxis 15:181

    Google Scholar 

  • Chadwick KH (1977) In: Casnati E (ed) Ionizing radiation metrology. Editrice Compositori, Bologna, p 195

    Google Scholar 

  • Chadwick KH, Rintjema D, Broeke WRR (1978) Food preservation by irradiation. In: Proceedings of symposium, vol II, IAEA publication STI/PUB/470, International Atomic Energy Agency, Vienna, p 327

    Google Scholar 

  • Chappas W (1980) Radiat Phys Chem 18:1017

    Google Scholar 

  • Charlesby A (1960) Atomic radiation and polymers. Academic, New York

    Google Scholar 

  • Charlesby A, Gould AR, Ledbury KJ (1964) Proy Roy Soc A247:348

    Google Scholar 

  • Chen W, Haishen J, Xiang D, Dongyuan L, Huaying B (1980) Radiat Phys Chem 16:195

    CAS  Google Scholar 

  • Christensen P (1982) Application of thermoluminescent dosimetry to high-dose measurements. In: Seminar on IAEA high-dose dosimetry in industrial radiation processing, Risø National Laboratory, Roskilde

    Google Scholar 

  • Christensen P, BØtter-Jensen L, Majborn B (1982) Int J Appl Radiat Isot 33:1035

    CAS  Google Scholar 

  • Collins AK, Makrigiorgos GM, Svensson GK (1994) Med Phys 21:1741

    CAS  Google Scholar 

  • Coninckx F, Schönbacher H, Tavlet M, Paic G, Razem D (1993) Nucl Instrum Meth Phys Res B 83:181

    CAS  Google Scholar 

  • Deplanque G, Gesell TF (1982) Int J Appl Radiat Isot 31(11):1015

    Google Scholar 

  • Desrosiers MF, Cooper SL, Puhl JM, McBain AL, Calwert GW (2004) Radiat Phys Chem 71(1–2):365

    CAS  Google Scholar 

  • Desrosiers MF, Peters M, Puhl JM (2009a) Radiat Phys Chem 78(7–8):465

    CAS  Google Scholar 

  • Desrosiers MF, Puhl JM (2009b) Radiat Phys Chem 78(7–8):461

    CAS  Google Scholar 

  • Dixon RL, Eckstrand KE (1982) Radiat Phys Chem 33:1171

    CAS  Google Scholar 

  • Dole M (1972) The radiation chemistry of macromolecules, vol 1. Academic, New York

    Google Scholar 

  • Domen SR (1982) J Res Natl Bur Stand 87:211

    CAS  Google Scholar 

  • Domen SR (1983a) Int J Appl Radiat Isot 34:643

    CAS  Google Scholar 

  • Domen SR (1983b) J Res Natl Bur Stand 88:373

    CAS  Google Scholar 

  • Domen SR (1987) In: Kase KR, Bjärngaard B, Attix FH (eds) The dosimetry of ionizing radiation, chapter 4, vol II. Academic, New York, p 245

    Google Scholar 

  • Domen SR, Ba WZ (1987) Nucl Instrum Meth Phys Res B 24/25:1054

    Google Scholar 

  • Domen SR, Lamperti PJ (1974) J Res Natl Bur Stand A78:595

    Google Scholar 

  • Dvornik I (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, part II. Marcel Dekker, New York, p 345

    Google Scholar 

  • Dvornik I, Zec U, Ranogajec F (1966) Food irradiation. In: Proceedings of symposium, SM-73/15, IAEA, International Atomic Energy Agency, Vienna, p 81

    Google Scholar 

  • Dvornik I, Razem D, Baric M (1969) Large radiation sources for industrial processes. In: IAEA symposium proceedings, International Atomic Energy Agency, Vienna, p 613

    Google Scholar 

  • Ebraheem S, Beshir WB, Kovács A, Wojnárovits L, Mclaughlin WL (1999) Radiat Phys Chem 55:785

    CAS  Google Scholar 

  • Ebraheem S, Beshir WB, Eid S, Sobhy R, Kovács A (2003) Radiat Phys Chem 67:569

    CAS  Google Scholar 

  • Ehlermann DAE (1988) In: Bögl KW, Regulla DF, Suess MJ (eds) Health impact, identification, and dosimetry of irradiated foods, Institue für Strahlenhygiene, report 125, report of WHO working group, Institut für Strahlenhygiene des Bundesgesundheitsamt, Neuherberg/Munich, p 415

    Google Scholar 

  • Emy-Reynolds G, Kovács A, Fletcher JJ (2007a) Radiat Phys Chem 76:1515

    Google Scholar 

  • Emy-Reynolds G, Kovács A, Fletcher JJ (2007b) Radiat Phys Chem 76:1519

    Google Scholar 

  • Ettinger RV, Puite KJ (1982) Int J Appl Radiat Isot 33:1115

    CAS  Google Scholar 

  • Farahani M, Mclaughlin WL (1988) Radiat Phys Chem 32:683

    CAS  Google Scholar 

  • Fielden EM, Holm NW (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry. Marcel Decker, New York, p 262

    Google Scholar 

  • Földiák G, Horváth Zs, Stenger V (1973) Dosimetry in agriculture, industry, biology, and medicine. In: International Atomic Energy Agency (ed) Proceedings of symposium, STI/PUB/311, International Atomic Energy Agency, Vienna, p 367

    Google Scholar 

  • Fowler JH, Attix FH (1966) In: Attrix FH, Roesch WC (eds) Radiation dosimetry, vol II. International Atomic Energy Agency, New York, p 367

    Google Scholar 

  • Freytag E (1971) Health Phys 20:93

    CAS  Google Scholar 

  • Fricke H, Hart EJ (1966) In: Attix FH, Roesch WC (eds) Radiation dosimetry, chapter 12, vol II. Academic, New York, p 1

    Google Scholar 

  • Fuochi PG, Lavalle M, Gombia E, Mosca R, Kovács A, Vitanza A, Patti A (1999) On the use of a bipolar power transistor as routine dosimeter in radiation processing. IAEA-TECDOC-1070, IAEA-SM-356/47. International Atomic Energy Agency, Vienna, p 95

    Google Scholar 

  • Fuochi PG, Lavalle M, Corda U, Recupero S, Bosetto A, Bascieri V, Kovács A (2004) Radiat Phys Chem 71:385

    CAS  Google Scholar 

  • Fuochi PG, Corda U, Gombia E, Lavalle M (2006) Nucl Instrum Meth A 564:521

    CAS  Google Scholar 

  • Fuochi PG, Lavalle M, Corda U, Kovács A, Peimel-Stuglik Z, Gombia E (2009a) Nucl Instrum Meth A 599:284

    CAS  Google Scholar 

  • Fuochi PG, Lavalle M, Corda U, Kuntz F, Plumeri S, Gombia E (2009b) Radiat Phys Chem. doi:10.1016/j.radphyschem. 2009.10.001

    Google Scholar 

  • Garcia RMD, Desrosiers MF, Attwood JG, Steklenski D, Griggs J, Ainsworth A, Heiss A, Mellor P, Patil D, Meiner J (2004) Radiat Phys Chem 71(1–2):375

    CAS  Google Scholar 

  • Gehringer P, Proksch E, Eschweiler H (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 333

    Google Scholar 

  • Genna S, Jaeger RG, Nagl J, Sanielevici A (1963) At Energy Rev 1:239

    Google Scholar 

  • Gierlach ZS, Krebs AT (1949) Am J Roentgenol Radium Ther 62:559

    CAS  Google Scholar 

  • Glover KM, King M, Watts MF (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, 1984. STI/PUB/671, International Atomic Energy Agency, Vienna, p 373

    Google Scholar 

  • Gupta BL, Bhat RM, Nariyan GR, Nilekani SR (1985) Radiat Phys Chem 26:647

    CAS  Google Scholar 

  • Hansen JW (1984) Risø report R-507. Risø National Laboratory, Roskilde

    Google Scholar 

  • Hansen JW, Olsen KJ (1986) Radiat Phys Chem 28(5–6):535

    Google Scholar 

  • Hansen JW, Olsen KJ, Wille M (1987) Radiat Prot Dosim 19:43

    CAS  Google Scholar 

  • Hartsom A, Mackay G, Spender M, Thomson I (1995) Absorbed dose mapping in self-shielded irradiators using direct reading MOSFET dosimeters. In: Annual meeting of the health physics society, July 1995. Available from Thomson and Nielsen Electronics, 25E Northside Road, Nepean, Ontario, Canada K2H8S1

    Google Scholar 

  • Horowitz YS (1984) Thermoluminescence and thermoluminescence dosimetry, vol I–III. CRC Press, Boca Raton

    Google Scholar 

  • Hubbell JH (1982) In: McLaughlin WL (ed) Trends in radiation dosimetry. Pergamon Press, Oxford; Int J Appl Radiat Isot 33:1269

    Google Scholar 

  • Humphreys JC, Mclaughlin WL (1989) Radiation processing: state of the art. In: Proceedings of 7th international meeting on radiation processing; Radiat Phys Chem 35:744

    Google Scholar 

  • ICRU (1969) Radiation dosimetry: X rays and gamma rays with maximum photon energies between 0.6 and 50 MeV, ICRU report 14. International Commission on Radiation Units and Measurements, Bethesda

    Google Scholar 

  • ICRU (2008) Dosimetry systems for use in radiation processing, ICRU report 80. International Commission on Radiation Units and Measurements, Bethesda

    Google Scholar 

  • ISO (1994) Personal photographic dosemeters, ISO/DIS report 1757. International Standards Organization, Geneva

    Google Scholar 

  • ISO (2006) Sterilization of health care products – radiation – parts 1-2-3, ISO 11137. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO/ASTM (2002a) Standard practice for use of a ceric-cerous sulphate dosimetry system. ISO/ASTM standard 51205, American Society for Testing and Materials, http://www.astm.org

  • ISO/ASTM (2002b) Standard practice for use of the ethanol-chlorobenzene dosimetry system. ISO/ASTM standard 51538, American Society for Testing and Materials, http://www.astm.org

  • ISO/ASTM (2002c) Standard practice for use of a radiochromic liquid dosimetry system. ISO/ASTM standard 51540, American Society for Testing and Materials, http://www.astm.org

  • ISO/ASTM (2002d) Standard practice for use of cellulose acetate dosimetry system. ISO/ASTM standard 51650, American Society for Testing and Materials, http://www.astm.org

  • ISO/ASTM (2002e) Standard practice for the use of a polymethylmethacrylate dosimetry system. ISO/ASTM standard 51276, American Society for Testing and Materials, http://www.astm.org

  • ISO/ASTM (2002f) Standard practice for use of a radiochromic film dosimetry system. ISO/ASTM standard 51275, American Society for Testing and Materials, http://www.astm.org

  • ISO/ASTM (2002g) Standard practice for thermoluminescence-dosimetry (TLD) systems for radiation processing. ISO/ASTM standard 51956, American Society for Testing and Materials, http://www.astm.org

  • ISO/ASTM (2003a) Standard practice for the use of a dichromate dosimetry system. ISO/ASTM standard 51401, American Society for Testing and Materials, http://www.astm.org

  • ISO/ASTM (2003b) Standard practice for use of calorimetric dosimetry system. ISO/ASTM standard 51631, American Society for Testing and Materials, http://www.astm.org

  • ISO/ASTM (2004) Standard practice for use of the alanine-EPR dosimetry system. ISO/ASTM standard 51607, American Society for Testing and Materials, http://www.astm.org

  • Janovsky I (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 307

    Google Scholar 

  • Janovsky I, Miller A (1987) Appl Radiat Isot 38:931

    CAS  Google Scholar 

  • Janovsky I, Hansen J, Cernoch P (1988) Appl Radiat Isot 39:651

    CAS  Google Scholar 

  • Kantz AD, Humpherys KC (1977) Radiat Phys Chem 9:737

    Google Scholar 

  • Kojima T, Tanaka R, Morita A, Seguchi T (1986) Appl Radiat Isot 37:517

    CAS  Google Scholar 

  • Kovács A, Stenger V, Földiák G, Legeza L (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 135

    Google Scholar 

  • Kovács A, Wojnárovits L, Mclaughlin WL, Ebraheem Eid SE, Miller A (1996) Radiat Phys Chem 47:483

    Google Scholar 

  • Kovács A, Baranyai M, Wojnárovits L, Moussa A, Othman I, Mclaughlin WL (1999) Radiat Phys Chem 55:795

    Google Scholar 

  • Kovács A, Baranyai M, Wojnárovits L, Mclaughlin WL, Miller SD, Miller A, Fuochi PG, Lavalle M, Slezsák I (2000a) Radiat Phys Chem 57:691

    Google Scholar 

  • Kovács A, Baranyai M, Wojnárovits L, Slezsák I, Mclaughlin WL, Miller A, Moussa A (2000b) Radiat Phys Chem 57:711

    Google Scholar 

  • Kovács A, Baranyai M, Wojnárovits L, Miller SD, Murphy M, Mclaughlin WL, Slezsák I, Kovács AI (2002) Radiat Phys Chem 63:777

    Google Scholar 

  • Krebs AT (1963) In: Clark GL (ed) The encyclopedia of X-rays and gamma rays. Reinhold Publishing, New York, p 274

    Google Scholar 

  • Kreidl NJ, Blair GE (1956) Nucleonics 14:56

    Google Scholar 

  • Kreidl NJ, Blair GE (1959) Nucleonics 17:58

    Google Scholar 

  • Kriminskaya ZK, Makshanova NP, Dyumaev KM, Pikaev AK (1987) High Energy Chem 22:412

    Google Scholar 

  • Lakshmanan AR, Bhatt RC (1979) Phys Med Biol 24:1258

    CAS  Google Scholar 

  • Lakshmanan AR, Bhuwanchandra Bhatt RC (1978) Nucl Instrum Methods 153:431

    Google Scholar 

  • Matthews RW (1981) J Appl Radiat Isot 32:861

    CAS  Google Scholar 

  • Matthews RW (1982) In: McLaughlin WL (ed) Trends in radiation dosimetry. Pergamon, Oxford; Int J Appl Radiat Isot 33:1159

    Google Scholar 

  • Mattson LO, Johansson KA (1982) Acta Radiol Oncol 21:139

    Google Scholar 

  • Mcdonald JC, Pinkerton AP, Weiss H, Epp ER (1972) Radiat Res 49:495

    CAS  Google Scholar 

  • Mcdonald JC, Laughlin JS, Freeman RE (1976) Med Phys 3:80

    CAS  Google Scholar 

  • McEwen MR, Dusatuoy AR (2009) Metrologica 46:59

    Google Scholar 

  • Mclaughlin WL (1966) Int J Appl Radiat Isot 17:85

    CAS  Google Scholar 

  • Mclaughlin WL (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, chapter 5. Marcel Dekker, New York, p 129

    Google Scholar 

  • Mclaughlin WL (1974) In: Gaughran ERL, Goudie AJ (eds) Sterilization by ionizing radiation, vol I. Multiscience, Montreal, p 219

    Google Scholar 

  • Mclaughlin WL (1977) Radiation processing. In: Silverman J, Van Dyken A (eds) Transactions of 1st international meeting, Puerto Rico, 1976, vol I; Radiat Phys Chem 9:147

    Google Scholar 

  • Mclaughlin WL (1978) National and international standardization in radiation dosimetry. In: Proceedings of symposium Atlanta, 1977, IAEA, STI/PUB/471, vol I. International Atomic Energy Agency, Vienna, p 89

    Google Scholar 

  • Mclaughlin WL (1983) Radiat Phys Chem 21:359

    CAS  Google Scholar 

  • Mclaughlin WL (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 357

    Google Scholar 

  • Mclaughlin WL (1988) In: Bögl KW, Regulla DF, Suess MJ (eds) Health impact, identification and dosimetry of irradiated foods, ISH Report 125, proceedings of WHO workshop, Neuherberg/Munich, 1986, Intitut für Strahlenhygieje des Bundesgesundheitsamt, Neuherberg/Munich, p 384

    Google Scholar 

  • Mclaughlin WL (1996) In: Proceedings of the 11th international conference on solid state dosimetry, Budapest; Radiat. Prot. Dosimetry 66:197

    Google Scholar 

  • Mclaughlin WL, Chalkley L (1965) Photogr Sci Eng 9:195

    Google Scholar 

  • Mclaughlin WL, Kosanic MM (1974) Int J Appl Radiat Isot 25:249

    CAS  Google Scholar 

  • Mclaughlin WL, Hussmann EK, Eisenlohr HH, Chalkley L (1971) Int J Appl Radiat Isot 22:135

    CAS  Google Scholar 

  • Mclaughlin WL, Humphreys JC, Radak BB, Miller A, Olejnik TA (1979a) Advances in radiation processing. In: Silverman J (ed) Transactions of second international meeting, Miami, 1978, vol II; Radiat Phys Chem 14:535

    Google Scholar 

  • Mclaughlin WL, Lucas AC, Kapsar BM, Miller A (1979b) Radiat Phys Chem 14:467

    CAS  Google Scholar 

  • Mclaughlin WL, Miller A, Ellis SC, Lucas AC, Kapsar BM (1980) Nucl Instrum Methods 175:17

    CAS  Google Scholar 

  • Mclaughlin WL, Uribe RM, Miller A (1983) Radiation processing. In: Markovic V (ed) Transactions of 4th international meeting, Dubrovnik, 1982, vol II; Radiat Phys Chem 22:333

    Google Scholar 

  • Mclaughlin WL, Ba W-Z, Chappas WJ (1988) Progress in radition processing. In: Fraser FM (ed) Proceedings of 6th international symposium, Ottawa, 1987, vol II; Radiat Phys Chem 31:481

    Google Scholar 

  • Mclaughlin WL, Boyd AW, Chadwick KH, Mcdonald JC, Miller A (1989) Dosimetry for radiation processing. Taylor and Francis, London/New York/Philadelphia, pp 81, 113, 140

    Google Scholar 

  • Mclaughlin WL, Khan HM, Warasawas W, Al-sheikhly M, Radak BB (1989b) Radiat Phys Chem 33:39

    CAS  Google Scholar 

  • Mclaughlin WL, Desrosiers MF, Saylor MC (1993) In: Morissey RF (ed) Sterilization of medical products, vol VI. Polysciences Publications, Morin Heights, p 213

    Google Scholar 

  • Mclaughlin WL, Al-sheikhly M, Lewis DF, Kovács A, Wojnárovits L (1994) Polym Prepr 35:920

    CAS  Google Scholar 

  • Mclaughlin WL, Puhl JM, Al-sheikhly M, Christou M, Miller A, Kovács A, Wojnárovits WL, Lewis DF (1996) Radiat Prot Dosim 66:263

    CAS  Google Scholar 

  • Mclaughlin WL, Miller SD, Saylor MC, Kovács A, Wojnárovits L (1999) Radiat Phys Chem 55:247

    CAS  Google Scholar 

  • Miller A (1984) J Indust Irradiat Techn 2(3–4):367

    CAS  Google Scholar 

  • Miller A (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, 1984, STI/PUB/671, International Atomic Energy Agency, Vienna, p 425

    Google Scholar 

  • Miller A (1995) In: Proceedings of the 9th international meeting on radiation processing; Radiat Phys Chem 46:1243

    Google Scholar 

  • Miller A, Kovács A (1985) Applications of accelerators in research and industry ’84. In: Proceedings of 8th conference, Denton, Texas, part II; Nucl Instrum Meth B10/11:994

    Google Scholar 

  • Miller A, Mclaughlin WL (1981) High-dose measurements in industrial radiation processing. Technical report series no. 205. IAEA Publication STI/DOC/10/205. International Atomic Energy Agency, Vienna, p 119

    Google Scholar 

  • Miller A, Mclaughlin WL (1982) In: McLaughlin WL (ed) Trends in radiation dosimetry. Pergamon, Oxford; J Appl Radiat Isot 33:1299

    Google Scholar 

  • Miller A, Xie L (1985) Food irradiation processing. In: Proceedings of symposium, Washington, 1985. IAEA, STI/PUB/695, International Atomic Energy Agency, Vienna, p 347

    Google Scholar 

  • Miller SD, Yoder C (1996) In: Proceedings of the 11th international conference on solid state dosimetry, Budapest; Radiat Prot Dosim 66:89

    Google Scholar 

  • Miller A, Bjergbakke E, Mclaughlin WL (1975) Int J Appl Radiat Isot 26:611

    CAS  Google Scholar 

  • Miller A, Batsberg W, Karman W (1988) Progress in radiation processing. In: Fraser FM (ed) Proceedings of 6th international meeting, Ottawa, 1987, vol II; Radiat Phys Chem 31:491

    Google Scholar 

  • Miller A, Kovács A, Wieser A, Regulla DF (1989a) In: Proceedings of 2nd international symposium on ESR dosimetry and applications, Neuherberg/Munich, 1988; Appl Radiat Isot 40:967

    Google Scholar 

  • Miller SD, Stahl KA, Endres GWR, Mcdonald JC (1989b) Radiat Prot Dosim 22:195

    Google Scholar 

  • Miller SD, Endres GWR, Mcdonald JC, Swinth KL (1991) Radiat Prot Dosim 35:201

    Google Scholar 

  • Miller A, Kovács A, Kuntz F (2002) Radiat Phys Chem 63:739

    CAS  Google Scholar 

  • Milwy P, Genna S, Barr NF, Laughlin JS (1958) In: Proceedings of 2nd international conference, peaceful uses of atomic energy, Genev, Columiba University Press, New York, p 142

    Google Scholar 

  • Mott NF, Gurney RW (1948) Electronic processes in ionic crystals, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Muller AC (1970a) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry. Marcel Dekker, New York, p 423

    Google Scholar 

  • Muller AC (1970b) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry. Marcel Dekker, New York, p 429

    Google Scholar 

  • Murray KM, Attix FH (1973) Health Phys 25:169

    CAS  Google Scholar 

  • Nakayima T (1982) In: McLaughlin WL (ed) Trends in radiation dosimetry. Pergamon, Oxford; Int J Appl Radiat Isot 33:1077

    Google Scholar 

  • Niroomand-Rad A, Blackwell CR, Coursey BM, Gall KP, Galvin JM, Mclaughlin WL, Meigooni AS, Nath R, Rodgers JE, Soares CG (1998) Med Phys 25:2093

    CAS  Google Scholar 

  • Ostrowski K (1974) In: Gaughran ERL, Goudie AJ (eds) Sterilization by ionizing radiation, vol I. Multiscience Publications, Montreal, p 325

    Google Scholar 

  • Osvay M, Bíró T (1980) Nucl Instrum Methods 175:60

    CAS  Google Scholar 

  • Osvay M, Stenger V, Földiák G (1975) Biomedical dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/401, International Atomic Energy Agency, Vienna, p 347

    Google Scholar 

  • Parker RP (1970) Phys Med Biol 15:605

    CAS  Google Scholar 

  • Pesek M (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 263

    Google Scholar 

  • Petree B, Lamperti P (1967) J Res Natl Bur Stand 71C:19

    Google Scholar 

  • Puig JR, Laizier J, Sundardi F (1974) Radiosterilization of medical products. In: Proceedings of symposium, Bombay, 1974, IAEA, STI/PUB/383, International Atomic Energy Agency, Vienna, p 113

    Google Scholar 

  • Puite KJ, Ettinger KV (1982) Int J Appl Radiat Isot 33:1139

    CAS  Google Scholar 

  • Radak BB, Markovic V (1962) Int J Appl Radiat Isot 13:287

    CAS  Google Scholar 

  • Radak BB, Markovic VM (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, chapter 3. Marcel Dekker, New York, p 45

    Google Scholar 

  • Radak BB, Mclaughlin WL (1984) Radiat Phys Chem 23:673

    CAS  Google Scholar 

  • Radak BB, Hjortenberg PE, Holm NW (1973) Dosimetry in agriculture, industry, biology and medicine. In: Proceedings of symposium, IAEA, STI/PUB/311, International Atomic Energy Agency, Vienna

    Google Scholar 

  • Rageh MSJ, El-behay AZ, Soliman FAS (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 255

    Google Scholar 

  • Razem D, Dvornik I (1973a) Dosimetry in agriculture, industry, biology, and medicine. In: International Atomic Energy Agency (ed) Proceedings of symposium, Vienna 1972, IAEA STI/PUB/311, International Atomic Energy Agency, Vienna, p 405

    Google Scholar 

  • Razem D, Dvornik I (1973b) Radiation preservation of food. In: International Atomic Energy Agency (ed) Proceedings of symposium, Bombay 1972, IAEA STI/PUB/317, International Atomic Energy Agency, Vienna, p 537

    Google Scholar 

  • Razem D, Ocic G, Jamicic J, Dvornik I (1981) Int J Appl Radiat Isot 32:705

    CAS  Google Scholar 

  • Regulla DF (1972) Health Phys 22:491

    CAS  Google Scholar 

  • Regulla DF, Deffner U (1982) In: McLaughlin WL (ed) Trends in radiation dosimetry. Pergamon, Oxford; Int J Appl Radiat Isot 33:1101

    Google Scholar 

  • Regulla DF, Deffner U (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 221

    Google Scholar 

  • Saylor MC, Tamargo TT, Mclaughlin WL, Khan HM, Lewis DF, Schenfele RD (1988) Radiat Phys Chem 31:529

    CAS  Google Scholar 

  • Sehested K (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, part 2. Marcel Dekker, New York, p 313

    Google Scholar 

  • Sehested K, Bjergbakke E, Holm NW, Fricke H (1973) Dosimetry in agriculture, industry, biology and medicine. In: International Atomic Energy Agency (ed) Proceedings of symposium Vienna 1972, IAEA STI/PUB/311, International Atomic Energy Agency, Vienna, p 397

    Google Scholar 

  • Seuntjens J, Duane S (2009) Metrologia 46:39

    Google Scholar 

  • Sharpe PHG, Miller A (1999) Guidelines for the calibration of dosimeters for use in radiation processing, NPL report CIRM 29, p 1

    Google Scholar 

  • Sharpe PHG, Barrett JJ, Berkley AM (1985) Int J Appl Radiat Isot 36:647

    CAS  Google Scholar 

  • Sharpe PHG, Sephton JP, Gouldstone CA (2009a) Radiat Phys Chem 78(7–8):477

    CAS  Google Scholar 

  • Sharpe PHG, Miller A, Sephton JP, Gouldstone CA, Bailey M, Helt-Hansen J (2009b) Radiat Phys Chem 78(7–8):473

    CAS  Google Scholar 

  • Smathers JB, Otte VA, Smith AR, Almond PR, Attix FH, Spokas JJ, Quam WM, Goodman LJ (1977) Med Phys 4:74

    CAS  Google Scholar 

  • Tamura N, Tanaka R, Mitomo S, Matsuda K, Nagai S (1981) Radiat Phys Chem 18:947

    CAS  Google Scholar 

  • Tanaka R, Mitomo S, Tamura N (1984) Int J Appl Radiat Isot 35:875

    CAS  Google Scholar 

  • Temperton DJ, Dixon SM, Shentall GS, Ettinger KV (1984) J Appl Radiat Isot 35:139

    CAS  Google Scholar 

  • Thomassen J (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, 1984, STI/PUB/671, International Atomic Energy Agency, Vienna, p 171

    Google Scholar 

  • Van Laere K, Buysse J, Berkvens P (1989) Appl Radiat Isot 40:885

    Google Scholar 

  • Weast RC (ed) (1977–1978) CRC handbook of chemistry and physics, 58th edn. CRC Press, Cleveland

    Google Scholar 

  • Weiss J (1952) Nucleonics 10(7):28

    CAS  Google Scholar 

  • Weyde E, Frankenburger W (1931) Trans Faraday Soc 27:561

    CAS  Google Scholar 

  • Whitakker B (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry. Marcel Dekker, New York, p 363

    Google Scholar 

  • Whitakker B (1988) Dosimetry and control of radiation processing. In: Proceedings of symposium of UK panel on gamma and electron irradiation, Teddington, 1987. NPL Report RS (EST) 7, National Physical Laboratory, Teddington, p 18

    Google Scholar 

  • Whitakker B, Watts M, Mellor S, Heneghan M (1985) High-dose dosimetry. In: Proceedings of symposium, Vienna, 1984, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

McLaughlin, W.L., Miller, A., Kovács, A., Mehta, K.K. (2011). Dosimetry Methods. In: Vértes, A., Nagy, S., Klencsár, Z., Lovas, R.G., Rösch, F. (eds) Handbook of Nuclear Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0720-2_49

Download citation

Publish with us

Policies and ethics