Skip to main content

Functional MRI: Cognitive Neuroscience Applications

  • Chapter
  • First Online:

Abstract

Cognitive neuroscience is a discipline that attempts to determine the neural mechanisms underlying cognitive processes. Specifically, cognitive neuroscientists test hypotheses about brain–behavior relationships that can be organized along two conceptual domains: (1) functional specialization – the idea that functional modules exist within the brain, i.e., areas of the cerebral cortex that are specialized for a specific cognitive process; and (2) functional integration – the idea that a cognitive process can be an emergent property of interactions among a network of brain regions, which suggests that a brain region can play a different role across many functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Broca P. Remarques sur le siege de la faculte du langage articule suivies d’une observation d’amphemie (perte de al parole). Bulletin et Memoires de la Societe Anatomique de Paris, 1861;36: 330–357

    Google Scholar 

  2. Buckner RL, Raichle ME, Petersen SE. Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. J Neurophysiol. 1995;74(5):2163–73.

    PubMed  CAS  Google Scholar 

  3. Sarter M, Bernston G, Cacioppo J. Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. Am Psychol. 1996;51:13–21.

    Article  PubMed  CAS  Google Scholar 

  4. Gaffan D, Gaffan EA. Amnesia in man following transection of the fornix: a review. Brain. 1991;114:2611–8.

    Article  PubMed  Google Scholar 

  5. Feeney DM, Baron JC. Diaschisis. Stroke. 1986;17(5):817–30.

    Article  PubMed  CAS  Google Scholar 

  6. Fuster JM, Alexander GE. Neuron activity related to short-term memory. Science. 1971;173:652–4.

    Article  PubMed  CAS  Google Scholar 

  7. Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol. 1989;61:331–49.

    PubMed  CAS  Google Scholar 

  8. Funahashi S, Bruce CJ, Goldman-Rakic PS. Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas”. J Neurosci. 1993;13:1479–97.

    PubMed  CAS  Google Scholar 

  9. Watanabe T, Niki H. Hippocampal unit activity and delayed response in the monkey. Brain Res. 1985;325(1–2):241–54.

    Article  PubMed  CAS  Google Scholar 

  10. Cahusac PM, Miyashita Y, Rolls ET. Responses of hippocampal formation neurons in the monkey related to delayed spatial response and object-place memory tasks. Behav Brain Res. 1989;33(3): 229–40.

    Article  PubMed  CAS  Google Scholar 

  11. Alvarez P, Zola-Morgan S, Squire LR. The animal model of human amnesia: long-term memory impaired and short-term memory intact. Proc Natl Acad Sci USA. 1994;91(12):5637–41.

    Article  PubMed  CAS  Google Scholar 

  12. Corkin S. Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Semin Neurol. 1984;4:249–59.

    Article  Google Scholar 

  13. Ranganath C, D’Esposito M. Medial temporal lobe activity associated with active maintenance of novel information. Neuron. 2001;31(5):865–73.

    Article  PubMed  CAS  Google Scholar 

  14. Druzgal TJ, D’Esposito M. Activity in fusiform face area modulated as a function of working memory load. Brain Res Cogn Brain Res. 2001;10(3):355–64.

    Article  PubMed  CAS  Google Scholar 

  15. Henson R. Forward inference using functional neuroimaging: dissociations versus associations. Trends Cogn Sci. 2006;10(2):64–9.

    Article  PubMed  Google Scholar 

  16. Cohen MS, Kosslyn SM, Breiter HC, et al. Changes in cortical activity during mental rotation: a mapping study using functional MRI. Brain. 1996;119:89–100.

    Article  PubMed  Google Scholar 

  17. D’Esposito M, Ballard D, Aguirre GK, Zarahn E. Human prefrontal cortex is not specific for working memory: a functional MRI study. Neuroimage. 1998;8(3):274–82.

    Article  PubMed  Google Scholar 

  18. Poldrack RA. Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci. 2006;10(2):59–63.

    Article  PubMed  Google Scholar 

  19. Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R. Image distortion correction in fMRI: A quantitative evaluation. Neuroimage. 2002;16(1):217–40.

    Article  PubMed  Google Scholar 

  20. Jezzard P, Clare S. Sources of distortion in functional MRI data. Hum Brain Mapp. 1999;8(2–3):80–5.

    Article  PubMed  CAS  Google Scholar 

  21. Zeng H, Constable RT. Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magn Reson Med. 2002;48(1):137–46.

    Article  PubMed  Google Scholar 

  22. Grasby PM. Imaging the neurochemical brain in health and disease. Clin Med. 2002;2(1):67–73.

    PubMed  CAS  Google Scholar 

  23. Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JD. Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron. 2002;33(2):301–11.

    Article  PubMed  CAS  Google Scholar 

  24. Casey BJ, Cohen JD, Jezzard P, et al. Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. Neuroimage. 1995;2(3):221–9.

    Article  PubMed  CAS  Google Scholar 

  25. Savoy RL, Ravicz ME, Gollub R. The psychophysiological laboratory in the magnet: stimulus delivery, response recording, and safety. In: Moonen CTW, Bandettini PA, editors, Functional MRI. Berlin: Springer; 1999. p. 347–365

    Google Scholar 

  26. Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM. Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp. 1999;7:88–97.

    Article  Google Scholar 

  27. Belin P, Zatorre RJ, Hoge R, Evans AC, Pike B. Event-related fMRI of the auditory cortex. Neuroimage. 1999;10(4):417–29.

    Article  PubMed  CAS  Google Scholar 

  28. Sobel N, Prabhakaran V, Hartley CA, et al. Blind smell: brain activation induced by an undetected air-borne chemical. Brain. 1999;122(Pt 2):209–17.

    Article  PubMed  Google Scholar 

  29. Sobel N, Prabhakaran V, Desmond JE, Glover GH, Sullivan EV, Gabrieli JD. A method for functional magnetic resonance imaging of olfaction. J Neurosci Meth. 1997;78(1–2):115–23.

    Article  CAS  Google Scholar 

  30. Gitelman DR, Parrish TB, LaBar KS, Mesulam MM. Real-time monitoring of eye movements using infrared video-oculography during functional magnetic resonance imaging of the frontal eye fields. Neuroimage. 2000;11(1):58–65.

    Article  PubMed  CAS  Google Scholar 

  31. Kimmig H, Greenlee MW, Gondan M, Schira M, Kassubek J, Mergner T. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects. Exp Brain Res. 2001;141(2):184–94.

    Article  PubMed  CAS  Google Scholar 

  32. Palmer ED, Rosen HJ, Ojemann JG, Buckner RL, Kelley WM, Petersen SE. An event-related fMRI study of overt and covert word stem completion. Neuroimage. 2001;14(1 Pt 1):182–93.

    Article  PubMed  CAS  Google Scholar 

  33. Fu CH, Morgan K, Suckling J, et al. A functional magnetic resonance imaging study of overt letter verbal fluency using a clustered acquisition sequence: greater anterior cingulate activation with increased task demand. Neuroimage. 2002;17(2):871–9.

    Article  PubMed  Google Scholar 

  34. Barch DM, Sabb FW, Carter CS, Braver TS, Noll DC, Cohen JD. Overt verbal responding during fMRI scanning: empirical investigations of problems and potential solutions. Neuroimage. 1999;10(6):642–57.

    Article  PubMed  CAS  Google Scholar 

  35. Goldman RI, Stern JM, Engel Jr J, Cohen MS. Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol. 2000;111(11): 1974–80.

    Article  PubMed  CAS  Google Scholar 

  36. Lazeyras F, Zimine I, Blanke O, Perrig SH, Seeck M. Functional MRI with simultaneous EEG recording: feasibility and application to motor and visual activation. J Magn Reson Imaging. 2001;13(6):943–8.

    Article  PubMed  CAS  Google Scholar 

  37. Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Del Gratta C. Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage. 2007;34(2):598–607.

    Article  PubMed  CAS  Google Scholar 

  38. Otzenberger H, Gounot D, Foucher JR. Optimisation of a post-processing method to remove the pulse artifact from EEG data recorded during fMRI: an application to P300 recordings during e-fMRI. Neurosci Res. 2007;57(2):230–9.

    Article  PubMed  CAS  Google Scholar 

  39. Gnadt JW, Andersen RA. Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res. 1988;70: 216–20.

    PubMed  CAS  Google Scholar 

  40. Aguirre GK, Zarahn E, D’Esposito M. The variability of human, BOLD hemodynamic responses. Neuroimage. 1998;8(4):360–9.

    Article  PubMed  CAS  Google Scholar 

  41. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course of EPI of human brain function during task activation. Magn Reson Med. 1992;25:390–7.

    Article  PubMed  CAS  Google Scholar 

  42. Boynton GM, Engel SA, Glover GH, Heeger DJ. Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci. 1996;16:4207–21.

    PubMed  CAS  Google Scholar 

  43. Kim SG, Richter W, Ugurbil K. Limitations of temporal resolution in fMRI. Magn Reson Med. 1997;37:631–6.

    Article  PubMed  CAS  Google Scholar 

  44. Savoy RL, Bandettini PA, Weisskoff R, et al. Pushing the temporal resolution of fMRI: studies of very brief stimuli, onset of variability and asynchrony, and stimulu-correlated changes in noise. Proceedings of the 3rd Annual Meeting of the SMR, 1995. 3: p. 450

    Google Scholar 

  45. Zarahn E, Aguirre GK, D’Esposito M. A trial-based experimental design for functional MRI. Neuroimage. 1997;6:122–38.

    Article  PubMed  CAS  Google Scholar 

  46. Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport. 1998;9(16):3735–9.

    Article  PubMed  CAS  Google Scholar 

  47. Clark VP, Maisog JM, Haxby JV. fMRI studies of visual perception and recognition using a random stimulus design. Soc Neurosci Abstr. 1997;23:301.

    Google Scholar 

  48. Dale AM, Buckner RL. Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp. 1997;5:1–12.

    Article  Google Scholar 

  49. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage. 2000;11(6 Pt 1):735–59.

    Article  PubMed  CAS  Google Scholar 

  50. D’Esposito M, Zarahn E, Aguirre GK. Event-related functional MRI: implications for cognitive psychology. Psychol Bull. 1999;125:155–64.

    Article  PubMed  Google Scholar 

  51. Logothetis NK, Guggenberger H, Peled S, Pauls J. Functional imaging of the monkey brain. Nat Neurosci. 1999;2(6):555–62.

    Article  PubMed  CAS  Google Scholar 

  52. Cheng K, Waggoner RA, Tanaka K. Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron. 2001;32(2):359–74.

    Article  PubMed  CAS  Google Scholar 

  53. Logothetis N, Merkle H, Augath M, Trinath T, Ugurbil K. Ultra high-resolution fMRI in monkeys with implanted RF coils. Neuron. 2002;35(2):227–42.

    Article  PubMed  CAS  Google Scholar 

  54. Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996;272:551–4.

    Article  PubMed  CAS  Google Scholar 

  55. Kim SG, Duong TQ. Mapping cortical columnar structures using fMRI. Physiol Behav. 2002;77(4–5):641–4.

    Article  PubMed  CAS  Google Scholar 

  56. Menon RS, Ogawa S, Strupp JP, Uğurbil K. Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol. 1997;77(5):2780–7.

    PubMed  CAS  Google Scholar 

  57. Grill-Spector K, Malach R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst). 2001;107(1–3):293–321.

    Article  CAS  Google Scholar 

  58. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron. 1999;24(1):187–203.

    Article  PubMed  CAS  Google Scholar 

  59. Posner MI, Petersen SE, Fox PT, Raichle ME. Localization of cognitive operations in the human brain. Science. 1988;240:1627–31.

    Article  PubMed  CAS  Google Scholar 

  60. Sternberg S. The discovery of processing stages: extensions of Donders’ method. Acta Psychol. 1969;30:276–315.

    Article  Google Scholar 

  61. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single word processing. Nature. 1988;331:585–9.

    Article  PubMed  CAS  Google Scholar 

  62. Fuster J. The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobes. 3rd ed. Raven Press: New York; 1997.

    Google Scholar 

  63. Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA. Spatial working memory in humans as revealed by PET. Nature. 1993;363:623–5.

    Article  PubMed  CAS  Google Scholar 

  64. Zarahn E, Aguirre GK, D’Esposito M. Temporal isolation of the neural correlates of spatial mnemonic processing with fMRI. Cogn Brain Res. 1999;7(3):255–68.

    Article  CAS  Google Scholar 

  65. Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci. 2002;25(12):621–5.

    Article  PubMed  CAS  Google Scholar 

  66. Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci. 2002;3(2):142–51.

    Article  PubMed  CAS  Google Scholar 

  67. Friston KJ, Josephs O, Rees G, Turner R. Nonlinear event-related responses in fMRI. Magn Reson Med. 1998;39(1):41–52.

    Article  PubMed  CAS  Google Scholar 

  68. Glover GH. Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage. 1999;9(4):416–29.

    Article  PubMed  CAS  Google Scholar 

  69. Miller KL, Luh WM, Liu TT, et al. Nonlinear temporal dynamics of the cerebral blood flow response. Hum Brain Mapp. 2001;13(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  70. Vazquez AL, Noll DC. Nonlinear aspects of the BOLD response in functional MRI. Neuroimage. 1998;7(2):108–18.

    Article  PubMed  CAS  Google Scholar 

  71. D’Esposito M, Zarahn E, Aguirre GK, Rypma B. The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage. 1999;10(1):6–14.

    Article  PubMed  Google Scholar 

  72. Rosen BR, Buckner RL, Dale AM. Event-related functional MRI: past, present, and future. Proc Natl Acad Sci USA. 1998;95(3):773–80.

    Article  PubMed  CAS  Google Scholar 

  73. Donaldson DI, Petersen SE, Ollinger JM, Buckner RL. Dissociating state and item components of recognition memory using fMRI. Neuroimage. 2001;13(1):129–42.

    Article  PubMed  CAS  Google Scholar 

  74. Mitchell KJ, Johnson MK, Raye CL, D’Esposito M. fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Brain Res Cogn Brain Res. 2000;10(1–2):197–206.

    Article  PubMed  CAS  Google Scholar 

  75. Keppel G, Zedeck S. Data analysis for research design. 1989, New York: W.H. Freeman & Company

    Google Scholar 

  76. Worsley KJ, Friston KJ. Analysis of fMRI time-series revisited - again. Neuroimage. 1995;2:173–82.

    Article  PubMed  CAS  Google Scholar 

  77. Everitt BS, Bullmore ET. Mixture model mapping of the brain activation in functional magnetic resonance images. Hum Brain Mapp. 1999;7(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  78. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002;15(4):870–8.

    Article  PubMed  Google Scholar 

  79. Zarahn E, Aguirre GK, D’Esposito M. Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. Neuroimage. 1997;5:179–97.

    Article  PubMed  CAS  Google Scholar 

  80. Aguirre GK, Zarahn E, D’Esposito M. Empirical analyses of BOLD fMRI statistics. II. Spatially smoothed data collected under null-hypothesis and experimental conditions. Neuroimage. 1997;5: 199–212.

    Article  PubMed  CAS  Google Scholar 

  81. D’Esposito M, Ballard D, Zarahn E, Aguirre GK. The role of ­prefrontal cortex in sensory memory and motor preparation: an event-related fMRI study. Neuroimage. 2000;11(5 Pt 1):400–8.

    Article  PubMed  Google Scholar 

  82. Zarahn E, Slifstein M. A reference effect approach for power analysis in fMRI. Neuroimage. 2001;14(3):768–79.

    Article  PubMed  CAS  Google Scholar 

  83. Van Horn JD, Ellmore TM, Esposito G, Berman KF. Mapping voxel-based statistical power on parametric images. Neuroimage. 1998;7(2):97–107.

    Article  PubMed  Google Scholar 

  84. Aguirre GK, D’Esposito M. Experimental design for brain fMRI. In: Moonen CTW, Bandettini PA, editors. Functional MRI, Berlin: Springer; 1999, p. 369–380

    Google Scholar 

  85. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–7.

    Article  PubMed  CAS  Google Scholar 

  86. Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol. 2001;64(6):575–611.

    Article  PubMed  CAS  Google Scholar 

  87. Fang HCH. Observations on aging characteristics of cerebral blood vessels, macroscopic and microscopic features. In: Gerson S, Terry RD, editors. Neurobiology of aging, New York: Raven Press; 1976

    Google Scholar 

  88. Bentourkia M, Bol A, Ivanoiu A, et al. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci. 2000;181(1–2):19–28.

    Article  PubMed  CAS  Google Scholar 

  89. Schultz SK, O’Leary DS, Boles Ponto LL, Watkins GL, Hichwa RD, Andreasen NC. Age-related changes in regional cerebral blood flow among young to mid-life adults. Neuroreport. 1999;10(12): 2493–6.

    Article  PubMed  CAS  Google Scholar 

  90. Yamamoto M, Meyer JS, Sakai F, Yamaguchi F. Aging and cerebral vasodilator responses to hypercarbia: responses in normal aging and in persons with risk factors for stroke. Arch Neurol. 1980;37(8):489–96.

    PubMed  CAS  Google Scholar 

  91. Yamaguchi T, Kanno I, Uemura K, et al. Reduction in regional cerebral rate of oxygen during human aging. Stroke. 1986;17: 1220–8.

    Article  PubMed  CAS  Google Scholar 

  92. Takada H, Nagata K, Hirata Y, et al. Age-related decline of cerebral oxygen metabolism in normal population detected with positron emission tomography. Neurol Res. 1992;14(2 Suppl):128–31.

    PubMed  CAS  Google Scholar 

  93. Claus JJ, Breteler MM, Hasan D, et al. Regional cerebral blood flow and cerebrovascular risk factors in the elderly population. Neurobiol Aging. 1998;19(1):57–64.

    Article  PubMed  CAS  Google Scholar 

  94. Cunnington R, Iansek R, Bradshaw JL, Phillips JG. Movement-related potentials in Parkinson’s disease. Presence and predictability of temporal and spatial cues. Brain. 1995;118(Pt 4):935–50.

    Article  PubMed  Google Scholar 

  95. Buckner RL, Snyder AZ, Sanders AL, Raichle ME, Morris JC. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci. 2000;12 Suppl 2:24–34.

    Article  PubMed  Google Scholar 

  96. Huettel SA, Singerman JD, McCarthy G. The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage. 2001;13(1):161–75.

    Article  PubMed  CAS  Google Scholar 

  97. Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM. Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke. 2002;33(1):103–9.

    Article  PubMed  CAS  Google Scholar 

  98. Rypma B, Prabhakaran V, Desmond JE, Gabrieli JD. Age differences in prefrontal cortical activity in working memory. Psychol Aging. 2001;16(3):371–84.

    Article  PubMed  CAS  Google Scholar 

  99. Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics. 2007;4(3):346–59.

    Article  PubMed  Google Scholar 

  100. Brown GG, Clark C, Liu TT. Measurement of cerebral perfusion with arterial spin labeling: part 2 applications. J Int Neuropsychol Soc. 2007;13(3):526–38.

    Article  PubMed  Google Scholar 

  101. Aguirre GK, Detre JA, Zarahn E, Alsop DC. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage. 2002;15(3):488–500.

    Article  PubMed  CAS  Google Scholar 

  102. Liu TT, Brown GG. Measurement of cerebral perfusion with arterial spin labeling: part 1 methods. J Int Neuropsychol Soc. 2007;13(3):517–25.

    Article  PubMed  Google Scholar 

  103. Fernández-Seara MA, Wang J, Wang Z, et al. Imaging mesial temporal lobe activation during scene encoding: comparison of fMRI using BOLD and arterial spin labeling. Hum Brain Mapp. 2007;28(12):1391–400.

    Article  PubMed  Google Scholar 

  104. Lee GR, Hernandez-Garcia L, Noll DC. Functional imaging with Turbo-CASL: transit time and multislice imaging considerations. Magn Reson Med. 2007;57(4):661–9.

    Article  PubMed  Google Scholar 

  105. Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in huma extrastriate cortex specialized for face perception. J Neurosci. 1997;17:4302–11.

    PubMed  CAS  Google Scholar 

  106. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science. 2001;293(5539):2425–30.

    Article  PubMed  CAS  Google Scholar 

  107. Polyn SM, Natu VS, Cohen JD, Norman KA. Category-specific cortical activity precedes retrieval during memory search. Science. 2005;310(5756):1963–6.

    Article  PubMed  CAS  Google Scholar 

  108. Zarahn E, Rakitin BC, Abela D, Flynn J, Stern Y. Distinct spatial patterns of brain activity associated with memory storage and search. Neuroimage. 2006;33(2):794–804.

    Article  PubMed  Google Scholar 

  109. Williams MA, Dang S, Kanwisher NG. Only some spatial patterns of fMRI response are read out in task performance. Nat Neurosci. 2007;10(6):685–6.

    Article  PubMed  CAS  Google Scholar 

  110. Buchel C, Coull JT, Friston KJ. The predictive value of changes in effective connectivity for human learning. Science. 1999;283(5407): 1538–41.

    Article  PubMed  CAS  Google Scholar 

  111. McIntosh AR, Grady CL, Haxby JV, Ungerleider LG, Horwitz B. Changes in limbic and prefrontal functional interactions in a working memory task for faces. Cereb Cortex. 1996;6(4):571–84.

    Article  PubMed  CAS  Google Scholar 

  112. Gerstein GL, Perkel DH, Subramanian KN. Identification of functionally related neural assemblies. Brain Res. 1978;140(1):43–62.

    Article  PubMed  CAS  Google Scholar 

  113. Penny WD, Stephan KE, Mechelli A, Friston KJ. Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage. 2004;23 Suppl 1:S264–74.

    Article  PubMed  Google Scholar 

  114. Sun FT, Miller LM, D’Esposito M. Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage. 2004;21(2):647–58.

    Article  PubMed  Google Scholar 

  115. Sun FT, Miller LM, D’Esposito M. Measuring temporal dynamics of functional networks using phase spectrum of fMRI data. Neuroimage. 2005;28(1):227–37.

    Article  PubMed  Google Scholar 

  116. Sun FT, Miller LM, Rao AA. D’Esposito M. Cereb Cortex: Functional Connectivity of Cortical Networks Involved in Bimanual Motor Sequence Learning; 2006.

    Google Scholar 

  117. Gazzaley A, Rissman J, Desposito M. Functional connectivity during working memory maintenance. Cogn Affect Behav Neurosci. 2004;4(4):580–99.

    Article  PubMed  Google Scholar 

  118. Fuhrmann Alpert G, Sun FT, Handwerker D, D’Esposito M, Knight RT. Spatio-temporal information analysis of event-related BOLD responses. Neuroimage. 2007;34(4):1545–61.

    Article  PubMed  Google Scholar 

  119. Rees G, Frith CD, Lavie N. Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science. 1997;278(5343):1616–9.

    Article  PubMed  CAS  Google Scholar 

  120. Treisman AM. Strategies and models of selective attention. Psychol Rev. 1969;76(3):282–99.

    Article  PubMed  CAS  Google Scholar 

  121. Lavie N, Tsal Y. Perceptual load as a major determinant of the locus of selection in visual attention. Percept Psychophys. 1994;56(2):183–97.

    Article  PubMed  CAS  Google Scholar 

  122. McCarthy RA, Warrington EK. Disorders of semantic memory. Philos Trans R Soc Lond B Biol Sci. 1994;346(1315):89–96.

    Article  PubMed  CAS  Google Scholar 

  123. Warrington EST. Category specific semantic impairments. Brain. 1984;107:829–54.

    Article  PubMed  Google Scholar 

  124. Thompson-Schill SL. Neuroimaging studies of semantic memory: inferring “how” from “where”. Neuropsychologia. 2003;41(3): 280–92.

    Article  PubMed  Google Scholar 

  125. Thompson-Schill SL, D’Esposito M, Aguirre GK, Farah MJ. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci USA. 1997;94(26): 14792–7.

    Article  PubMed  CAS  Google Scholar 

  126. Thompson-Schill SL, Swick D, Farah MJ, D’Esposito M, Kan IP, Knight RT. Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. Proc Natl Acad Sci USA. 1998;95(26):15855–60.

    Article  PubMed  CAS  Google Scholar 

  127. Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala MD. Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia. 1999;37(2):207–17.

    Article  PubMed  CAS  Google Scholar 

  128. Rushworth MF, Hadland KA, Paus T, Sipila PK. Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J Neurophysiol. 2002;87(5):2577–92.

    PubMed  CAS  Google Scholar 

  129. Ruff CC, Bestmann S, Blankenburg F, et al. Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS fMRI. Cereb Cortex. 2008;18(4):817–27.

    Google Scholar 

  130. Ruff CC, Blankenburg F, Bjoertomt O, et al. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol. 2006;16(15):1479–88.

    Article  PubMed  CAS  Google Scholar 

  131. Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science. 1999;284(5416):970–4.

    Article  PubMed  CAS  Google Scholar 

  132. Gibbs SE, D’Esposito M. Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cogn Affect Behav Neurosci. 2005;5(2):212–21.

    Article  PubMed  Google Scholar 

  133. Gibbs SE, D’Esposito M. A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory. Psychopharmacol (Berl). 2005;180(4): 644–53.

    Article  CAS  Google Scholar 

  134. Gibbs SE, D’Esposito M. A functional magnetic resonance imaging study of the effects of pergolide, a dopamine receptor agonist, on component processes of working memory. Neuroscience. 2006;28;139(1):359–71.

    Google Scholar 

  135. Cools R, Sheridan M, Jacobs E, D’Esposito M. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci. 2007;27(20):5506–14.

    Article  PubMed  CAS  Google Scholar 

  136. Kastner S, Pinsk MA. Visual attention as a multilevel selection process. Cogn Affect Behav Neurosci. 2004;4(4):483–500.

    Article  PubMed  Google Scholar 

  137. Gazzaley A, Cooney JW, McEvoy K, Knight RT, D’Esposito M. Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci. 2005;17(3):507–17.

    Article  PubMed  Google Scholar 

  138. Gazzaley A, Cooney JW, Rissman J, D’Esposito M. Top-down suppression deficit underlies working memory impairment in normal aging. Nat Neurosci. 2005;8(10):1298–300.

    Article  PubMed  CAS  Google Scholar 

  139. Poldrack RA. Imaging brain plasticity: conceptual and methodological issues–a theoretical review. Neuroimage. 2000;12(1): 1–13.

    Article  PubMed  CAS  Google Scholar 

  140. Aron AR, Gluck MA, Poldrack RA. Long-term test-retest reliability of functional MRI in a classification learning task. Neuroimage. 2006;1;29(3):1000–6.

    Google Scholar 

  141. Wei X, Yoo SS, Dickey CC, Zou KH, Guttmann CR, Panych LP. Functional MRI of auditory verbal working memory: long-term reproducibility analysis. Neuroimage. 2004;21(3):1000–8.

    Article  PubMed  Google Scholar 

  142. Yoo SS, Wei X, Dickey CC, Guttmann CR, Panych LP. Long-term reproducibility analysis of fMRI using hand motor task. Int J Neurosci. 2005;115(1):55–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D’Esposito MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

D’Esposito, M., Kayser, A.S., Chen, A.J.W. (2011). Functional MRI: Cognitive Neuroscience Applications. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_34

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics