Skip to main content

Patterns of jellyfish abundance in the North Atlantic

  • Chapter
  • First Online:
Jellyfish Blooms: Causes, Consequences, and Recent Advances

Part of the book series: Developments in Hydrobiology ((DIHY,volume 206))

Abstract

A number of explanations have been advanced to account for the increased frequency and intensity at which jellyfish (pelagic cnidarians and ctenophores) blooms are being observed, most of which have been locally directed. Here, we investigate seasonal and inter-annual patterns in abundance and distribution of jellyfish in the North Atlantic Ocean to determine if there have been any system-wide changes over the period 1946-2005, by analysing records of the presence of coelenterates from the Continuous Plankton Recorder (CPR) survey. Peaks in jellyfish abundance are strongly seasonal in both oceanic and shelf areas: oceanic populations have a mid-year peak that is more closely related to peaks in phyto- and zooplankton, whilst the later peak of shelf populations mirrors changes in SST and reflects processes of advection and aggregation. There have been large amplitude cycles in the abundance of oceanic and shelf jellyfish (although not synchronous) over the last 60 years, with a pronounced synchronous increase in abundance in both areas over the last 10 years. Inter-annual variations in jellyfish abundance in oceanic areas are related to zooplankton abundance and temperature changes, but not to the North Atlantic Oscillation or to a chlorophyll index. The long-term inter-annual abundance of jellyfish on the shelf could not be explained by any environmental variables investigated. As multi-decadal cycles and more recent increase in jellyfish were obvious in both oceanic and shelf areas, we conclude that these are likely to reflect an underlying climatic signal (and bottom-up control) rather than any change in fishing pressure (top-down control). Our results also highlight the role of the CPR data in investigating long-term changes in jellyfish, and suggest that the cnidarians sampled by the CPR are more likely to be holoplanktic hydrozoans and not the much larger meroplanktic scyphozoans as has been suggested previously.

Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai, M. N., 1987. Population ecology of the hydromedusae of Massett Inlet, British Columbia. In Bouillon, J., F. Boero, F. Cicogna & P. F. S. Cornelius (eds), Modern Trends in the Systematics, Ecology and Evolution of Hydroids and Hydromedusae. Clarendon Press, Oxford: 107–116.

    Google Scholar 

  • Arai, M. N., 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451: 69–87.

    Article  Google Scholar 

  • Arai, M. N., 2005. Predation on pelagic coelenterates: a review. Journal of the Marine Biological Association of the United Kingdom 85: 523–536.

    Article  Google Scholar 

  • Attrill, M. J. & R. M. Thomas, 1996. Long-term distribution patterns of mobile estuarine invertebrates (Ctenophora, Cnidaria, Crustacea: Decapoda) in relation to hydrological parameters. Marine Ecology Progress Series 143: 25–36.

    Article  Google Scholar 

  • Attrill, M. J., J. Wright & W. Edwards, 2007. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnology and Oceanography 52: 480–485.

    Google Scholar 

  • Banse, K., 1990. Mermaids — their biology, culture and demise. Limnology and Oceanography 35: 148–153.

    Article  Google Scholar 

  • Barnard, R., S. D. Batten, G. Beaugrand, C. Buckland, D. V. P. Conway, M. Edwards, J. Finlayson, L. W. Gregory, N. C. Halliday, A. W. G. John, D. G. Johns, A. D. Johnson, T. D. Jonas, J. A. Lindley, J. Nyman, P. Pritchard, P. C. Reid, A. J. Richardson, R. E. Saxby, J. Sidey, M. A. Smith, D. P. Stevens, C. M. Taylor, P. R. G. Tranter, A. W. Walne, M. Wootton, C. O. M. Wotton & J. C. Wright, 2004. Continuous plankton records: plankton atlas of the North Atlantic Ocean (1958-1999). II. Biogeographical charts. Marine Ecology Progress Series, Supplement: 11–75.

    Google Scholar 

  • Barnes, R. D., 1980. Invertebrate Zoology. Saunders College, Philadelphia.

    Google Scholar 

  • Beaugrand, G., 2004. The North Sea regime shift: evidence, causes, mechanisms and consequences. Progress in Oceanography 60: 245–262.

    Article  Google Scholar 

  • Beaugrand, G., F. Ibañez & J. A. Lindley, 2001. Geographical distribution and seasonal and diel changes in the diversity of calanoid copepods in the North Atlantic and North Sea. Marine Ecology Progress Series 219: 189–203.

    Article  Google Scholar 

  • Beaugrand, G., F. Ibañez & J. A. Lindley, 2003. An overview of statistical method applied to the CPR data. Progress in Oceanography 58: 235–262.

    Article  Google Scholar 

  • Beaugrand, G., P. C. Reid, F. Ibañez, J. A. Lindley & M. Edwards, 2002. Reorganisation of North Atlantic marine copepod biodiversity and climate. Science 296: 1692–1694.

    Article  PubMed  CAS  Google Scholar 

  • Boero, F., C. Bucci, A. M. R. Colucci, C. Gravili & L. Stabili, 2007. Obelia (Cnidaria, Hydrozoa, Campanulariidae): a microphagous, filter-feeding medusa. Marine Ecology 28: 178–183.

    Google Scholar 

  • Boersma, M., A. M. Malzahn, W. Greve & J. Javidpour, 2007. The first occurrence of the ctenophore Mnemiopsis leidyi in the North Sea. Helgololand Marine Research 61: 153–155.

    Article  Google Scholar 

  • Brierley, A. S., B. E. Axelsen, E. Buecher, C. Sparks, H. Boyer & M. J. Gibbons, 2001. Acoustic observations of jellyfish in the Namibian Benguela. Marine Ecology Progress Series 210: 55–66.

    Article  Google Scholar 

  • Brinckmann-Voss, A., 1996. Seasonality of hydroids (Hydrozoa, Cnidaria) from an intertidal pool and adjacent subtidal habitats at Race Rocks, off Vancouver Island, Canada. Scientia Marina 66: 89–97.

    Google Scholar 

  • Brodeur, R. D., C. E. Mills, J. E. Overland, G. E. Walters & J. D. Schumacher, 1999. Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fisheries Oceanography 8: 296–306.

    Article  Google Scholar 

  • Brodeur, R. D., H. Sugisaki & G. L. Hunt, 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233: 89–103.

    Article  Google Scholar 

  • Buecher, E. & M. J. Gibbons, 2000. Interannual variation in the composition of the assemblages of medusae and cteno-phores in St Helena Bay, Southern Benguela Ecosystem. Scientia Marina 64: 123–134.

    Article  Google Scholar 

  • Bullard, L. & A. Myers, 2000. Observations on the seasonal occurrence and abundance of gelatinous zooplankton in Lough Hyne, Co. Cork, south-west Ireland. Biology and Environment — Proceedings of the Royal Irish Academy 100B: 75–83.

    Google Scholar 

  • Byrne, P., 1995. Seasonal composition of meroplankton in the Dunkellin estuary, Galway Bay. Biology and Environment — Proceedings of the Royal Irish Academy 95B: 35–48.

    Google Scholar 

  • Carré, D. & C. Carré, 1990. Complex reproductive cycle in Eucheilota paradoxica (Hydrozoa: Leptomedusae): medusae, polyps and frustules produced from medusa stage. Marine Biology 104: 303–310.

    Article  Google Scholar 

  • Colebrook, J. M., 1975. The continuous plankton recorder survey: automatic data processing methods. Bulletin of Marine Ecology 8: 123–142.

    Google Scholar 

  • Colebrook, J. M., 1979. Continuous plankton records: seasonal cycles of phytoplankton and copepods in the North Atlantic Ocean and the North Sea. Marine Biology 51: 23–32.

    Article  Google Scholar 

  • Colebrook, J. M. & G. A. Robinson, 1961. The seasonal cycle of the plankton in the North Sea and the North-Eastern Atlantic. Journal du Conseil Interntional pour l’Exloration de lar Mer 26: 156–165.

    Google Scholar 

  • Colebrook, J. M. & G. A. Robinson, 1965. Continuous plankton records: seasonal cycles of phytoplankton and copepods in the north-eastern Atlantic and the North Sea. Bulletin of Marine Ecology 6: 123–139.

    Google Scholar 

  • Drinkwater, K. F.,A. Belgrano, A. Borja, A. Conversi, M. Edwards, C. H. Greene, G. Ottersen, A. Pershing & H. Walker, 2003. The response of marine ecosystems to climate variability associated with the North Atlantic Oscillation. In Hurrell, J. W., Y. Kushnir, G. Ottersen, & M. Visbeck (eds), The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophysical Monograph 134. AGU, Washington, DC: 211–234.

    Google Scholar 

  • Edwards, M., G. Beaugrand, P. C. Reid, A. A. Rowden & M. B. Jones, 2002. Ocean climate anomalies and the ecology of the North Sea. Marine Ecology Progress Series 239: 1–10.

    Article  Google Scholar 

  • Edwards, M., D. G. Johns, S. C. Leterme, E. Svendsen & A. J. Richardson, 2006. Regional climate change and harmful algal blooms in the northeast Atlantic. Limnology and Oceanography 51: 820–829.

    Google Scholar 

  • Edwards, M. & A. J. Richardson, 2004. The impact of climate change on the phenology of the plankton community and trophic mismatch. Nature 430: 881–884.

    Article  PubMed  CAS  Google Scholar 

  • Elmhirts, R., 1925. Lunar periodicity in Obelia. Nature 116: 358–359.

    Google Scholar 

  • Evans, F., 1972. The permanent zooplankton of Northumberland coastal waters. Proceedings of the University of Newcastle upon Tyne Philosophical Society 2: 25–68.

    Google Scholar 

  • Feigenbaum, D. L. & M. Kelly, 1984. Changes in the lower Chesapeake Bay food chain in the presence of the sea nettle Chrysaora quinquecirrha (Scyphomedusae). Marine Ecology Progress Series 19: 39–47.

    Article  Google Scholar 

  • FishStat Plus fisheries statistics software on CD-ROM. Food and Agricultural Organization of the United Nations.

    Google Scholar 

  • Fraser, J. H., 1970. The ecology of the ctenophore Pleuro-brachia pileus in Scottish waters. Journal du Conseil International pour l’Exploration de la Mer 33: 149–168.

    Google Scholar 

  • Gibbons, M. J., E. Buecher & D. Thibault-Botha, 2003. Observations on the ecology of Pleurobrachia pileus (Ctenophora) in the southern Benguela ecosystem. African Journal of Marine Science 25: 253–261.

    Google Scholar 

  • Goy, J., 1973. Gonionemus suvaensis: structural characters, developmental stages and ecology. Publications of the Seto Marine Biology Laboratory 20: 525–536.

    Google Scholar 

  • Goy, J., P. Morand & M. Etienne, 1989. Long term fluctuation of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean Sea. Prediction by climatic variables. Deep-Sea Research 36: 269–279.

    Google Scholar 

  • Graham, W. M., F. Pagès & W. M. Hamner, 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451: 199–212.

    Article  Google Scholar 

  • Greve, W., 1971. ökologische Untersuchungen an Pleurobrachia pileus. 1. Freilanduntersuchungen. Helgoländer wiss. Meeresunters 22: 303–325.

    Article  Google Scholar 

  • Greve, W., 1994. The 1989 German Bight invasion of Muggiaea atlantica. ICES Journal of Marine Science 51: 355–358.

    Article  Google Scholar 

  • Greve, W., F. Reiners & J. Nast, 1996. Biocoenotic changes of the zooplankton in the German Bight: the possible effects of eutrophication and climate. ICES Journal of Marine Science 53: 951–956.

    Article  Google Scholar 

  • Houghton, J. D. R., T. K. Doyle, M. W. Wilson, J. Davenport & G. C. Hays, 2006. Jellyfish aggregations and leather-back turtle foraging patterns in a temperate coastal environment. Ecology 87: 1967–1972.

    Article  PubMed  Google Scholar 

  • Hunt, H. G., 1968. Continuous plankton records: contribution towards a plankton atlas of the North Atlantic and the North Sea Part XI: the seasonal and annual distributions of Thaliacea. Bulletin of Marine Ecology 6: 225–249. Plates LXVIII-LXXXV.

    Google Scholar 

  • Hunt, B. P. V. & G. W. Hosie, 2006. Continuous plankton recorder flow rates revisited: clogging, ship speed and flow meter design. Journal of Plankton Research 28: 847–855.

    Article  Google Scholar 

  • Hurrell, J. W., 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269: 676–679.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, S. A., M. D. Skogen & E. Svendsen, 2002. Availability of horse mackerel (Trachurus trachurus) in the northeastern North Sea, predicted by the transport of Atlantic water. Fisheries Oceanography 11: 245–250.

    Article  Google Scholar 

  • Kirby, R. R., G. Beaugrand, J. A. Lindley, A. J. Richardson, M. Edwards & P. C. Reid, 2007. Climate effects and benthic-pelagic coupling in the North Sea. Marine Ecology Progress Series 330: 31–38.

    Article  Google Scholar 

  • Kirby, R. R. & J. A. Lindley, 2005. Molecular analysis of continuous plankton recorder samples, and examination of echinoderm larvae in the North Sea. Journal of the Marine Biological Association of the United Kingdom 85: 451–459.

    Article  CAS  Google Scholar 

  • Kramp, P. L., 1959. The hydromedusae of the Atlantic Ocean and adjacent waters. Dana Report 46: 1–283.

    Google Scholar 

  • Link, J. S. & M. D. Ford, 2006. Widespread and persistent increase of Ctenophora in the continental shelf ecosystem off NE USA. Marine Ecology Progress Series 320: 153–159.

    Article  Google Scholar 

  • Longhurst, A. R., 1998. Ecological Geography of the Sea. Academic Press, San Diego.

    Google Scholar 

  • Lynam, C. P., M. J. Gibbons, B. A. Axelsen, C. A. J. Sparks, J. Coetzee, B. G. Heywood & A. S. Brierley, 2006. Jellyfish overtake fish in a heavily fished ecosystem. Current Biology 16: 492–493.

    Article  CAS  Google Scholar 

  • Lynam, C. P., S. J. Hay & A. S. Brierley, 2004. Interannual variability in abundance of North Sea jellyfish and links to North Atlantic oscillation. Limnology and Oceanography 49: 637–643.

    Google Scholar 

  • Lynam, C. P., S. J. Hay & A. S. Brierley, 2005a. Jellyfish abundance and climatic variation: contrasting responses in oceanographically distinct regions of the North Sea, and possible implications for fisheries. Journal of the Marine Biological Association of the United Kingdom 85: 435–450.

    Article  Google Scholar 

  • Lynam, C. P., M. R. Heath, S. J. Hay & A. S. Brierley, 2005b. Evidence for impacts by jellyfish on North Sea herring recruitment. Marine Ecology Progress Series 298: 157–167.

    Article  Google Scholar 

  • Mackie, G. O., P. R. Pugh & J. E. Purcell, 1987. Siphonophore biology. Advances in Marine Biology 24: 97–262.

    Article  Google Scholar 

  • Mann, K. H. & J. R. N. Lazier, 1991. Dynamics of Marine Ecosystems. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Matsueda, N., 1969. Presentation of Aurelia aurita at thermal power station. Bulletin of the Marine Biology Station at Asamushi 13: 187–191.

    Google Scholar 

  • Mianzan, H., 1999. Ctenophora. In Boltovskoy, D. (ed.), South Atlantic Zooplankton. Backhuys Publishers, Leiden: 561–573.

    Google Scholar 

  • Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions. Hydrobiologia 451: 55–68.

    Article  Google Scholar 

  • Möller, H., 1984. Reduction of a larval herring population by jellyfish predator. Science 224: 621–622.

    Article  PubMed  Google Scholar 

  • Montgomery, M. K. & M. M. Kremer, 1995. Transmission of symbiotic dinoflagellates through the sexual cycle of the host scyphozon Linuche unguiculata. Marine Biology 124: 147–155.

    Article  Google Scholar 

  • Myers, R. A. & B. Worm, 2003. Rapid worldwide depletion of predatory fish communities. Nature 423: 280–283.

    Article  PubMed  CAS  Google Scholar 

  • Nicholas, K. R. & C. L. J. Frid, 1999. Occurrence of hydro-medusae in the plankton off Northumberland (western central North Sea) and the role of planktonic predators. Journal of the Marine Biological Association of the United Kingdom 79: 979–992.

    Article  Google Scholar 

  • North Sea Task Force, 1993. North Sea Quality Status Report 1993. Oslon and Paris Commissions, London/Olsen and Olsen, Fredensborg.

    Google Scholar 

  • Parsons, T. R. & C. M. Lalli, 2002. Jellyfish population explosions: revisiting a hypothesis of possible causes. Lamer 40: 111–121.

    Google Scholar 

  • Pauly, D., V. Christensen, S. Guenette, T. J. Pitcher, U. R. Sumaila, C. J. Walters, R. Watson & D. Zeller, 2002. Towards sustainability in world fisheries. Nature 418: 689–695.

    Article  PubMed  CAS  Google Scholar 

  • Purcell, J. E., 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the United Kingdom 85: 461–476.

    Article  Google Scholar 

  • Purcell, J. E., T. A. Shiganova, M. B. Decker & E. D. Houde, 2001. The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin. Hydrobiologia 451: 145–176.

    Article  Google Scholar 

  • Purcell, J. E., S.-I. Uye & W.-T. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.

    Article  Google Scholar 

  • Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series 180: 187–196.

    Article  Google Scholar 

  • Raitsos, D. E., P. C. Reid, S. J. Lavender, M. Edwards & A. J. Richardson, 2005. Extending the SeaWiFS chlorophyll dataset back 50 years in the northeast Atlantic. Geophysical Research Letters 32: L06603.

    Article  Google Scholar 

  • Raymont, J. E. G., 1983. Plankton and productivity in the oceans, Zooplankton. Pergamon Press, Oxford.

    Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent & A. Kaplan, 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research 108(D14): 4407.

    Article  Google Scholar 

  • Reid, P. C., N. P. Holliday & T. J. Smyth, 2001. Pulses in the eastern margin current and warmer water off the north west European shelf linked to North Sea ecosystem changes. Marine Ecology Progress Series 215: 283–287.

    Article  Google Scholar 

  • Richardson, A. J., A. W. Walne, A. W. G. John, T. D. Jonas, J. A. Lindley, D. W. Sims, D. Stevens & M. Witt, 2006. Using continuous plankton recorder data. Progress in Oceanography 68: 27–74.

    Article  Google Scholar 

  • Robinson, G. A., 1970. Continuous plankton records: variation in the seasonal cycle of phytoplankton in the North Atlantic. Bulletins of Marine Ecology 6: 333–345.

    Google Scholar 

  • Roosen-Runge, E. C., 1970. Life cycle of the hydromedusa Phialidium gregarium (A Agassiz, 1862) in the laboratory. Biological Bulletin of the Marine Biology Laboratory, Woods Hole 166: 206–215.

    Google Scholar 

  • Russell, F. S., 1933. The seasonal distribution of meroplankton as shown by catches in the 2-m Stramin ring-trawl in offshore waters off Plymouth. Journal of the Marine Biological Association of the United Kingdom 19: 73–82.

    Google Scholar 

  • Russell, F. S., 1938. The Plymouth offshore medusa fauna. Journal of the Marine Biological Association of the United Kingdom 22: 411–439.

    Google Scholar 

  • Russell, F. S., 1939. Hydrographical and biological conditions in the North Sea as indicated by planktonic organisms. Journal du Conseil 14: 171–192.

    Google Scholar 

  • Russell, F. S., 1953. The Medusae of the British Isles. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schneider, G., 1987. Role of advection in the distribution and abundance of Pleurobrachia pileus in Kiel Bight. Marine Ecology Progress Series 41: 99–102.

    Article  Google Scholar 

  • Shiganova, T. A., Z. A. Mirzoyan, E. A. Studenikina, S. P. Volovik, I. Siokoi-Frangou, S. Zervoudaki, E. D. Christou, A. Y. Skirta & H. J. Dumont, 2001. Population development of the invader ctenophore Mnemiopsis leidyi in the Black Sea and other seas of the Mediterranean basin. Marine Biology 139: 431–445.

    Article  Google Scholar 

  • Sims, D. W., E. J. Southall, G. A. Tarling & J. D. Metcalfe, 2005. Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. Journal of Animal Ecology 74: 755–761.

    Article  Google Scholar 

  • Sims, D. W., M. J. Witt, A. J. Richardson, E. J. Southall & J. D. Metcalfe, 2006. Encounter success of free-ranging marine predator movements across a dynamic prey landscape. Proceedings of the Royal Society B 273: 1195–1201.

    Article  PubMed  Google Scholar 

  • Stibor, H. & N. Tokle, 2003. Feeding and asexual reproduction of the jellyfish Sarsia gemmifera in response to resource enrichment. Oecologia 135: 202–208.

    PubMed  Google Scholar 

  • Stoecker, D. K., A. E. Michaels & L. H. Davis, 1987. Grazing by the jellyfish, Aurelia aurita, on microzooplankton. Journal of Plankton Research 9: 901–915.

    Article  Google Scholar 

  • Travis, J., 1993. Invader threatens Black, Azov Seas. Science 262: 1366–1367.

    Article  PubMed  CAS  Google Scholar 

  • Van der Veer, H. W. & C. F. M. Sadée, 1984. Seasonal occurrence of the ctenophore Pleurobrachia pileus in the western Dutch Wadden Sea. Marine Biology 79: 219–227.

    Article  Google Scholar 

  • Watson, H. G., 1930. The coelenterate plankton of the Northumbrian coast during the year 1925. Journal of the Marine Biological Association of the United Kingdom 17: 233–239.

    Article  Google Scholar 

  • Weijerman, M., H. Lindeboom & A. F. Zuur, 2005. Regime shifts in marine ecosystems of the North Sea and Wadden Sea. Marine Ecology Progress Series 298: 21–39.

    Article  CAS  Google Scholar 

  • Williams, R. & N. R. Collins, 1985. Chaetognaths and ctenophores in the holoplankton of the Bristol Channel. Marine Biology 85: 97–107.

    Article  Google Scholar 

  • Witt, M. J., A. C. Broderick, D. J. Johns, C. Martin, R. Penrose, M.S. Hoogmoed & B. J. Godley, 2007. Prey landscapes help identify potential foraging habitats for leatherback turtles in the northeast Atlantic. Marine Ecology Progress Series 337: 231–244.

    Article  Google Scholar 

  • Yip, S. Y., 1981. Investigations of the plankton of the west coast of Ireland-VII. A preliminary study of planktonic ctenophores along the west coast of Ireland, with special reference to Pleurobrachia pileus Müller, 1776, from Galway Bay. Proceedings of the Royal Irish Academy 81B: 89–109.

    Google Scholar 

  • Zar, J. H., 1984. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gibbons, M.J., Richardson, A.J. (2008). Patterns of jellyfish abundance in the North Atlantic. In: Pitt, K.A., Purcell, J.E. (eds) Jellyfish Blooms: Causes, Consequences, and Recent Advances. Developments in Hydrobiology, vol 206. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9749-2_4

Download citation

Publish with us

Policies and ethics