Skip to main content

A new Taqman© PCR-based method for the detection and identification of scyphozoan jellyfish polyps

  • Chapter
  • First Online:
Book cover Jellyfish Blooms: Causes, Consequences, and Recent Advances

Part of the book series: Developments in Hydrobiology ((DIHY,volume 206))

  • 1908 Accesses

Abstract

While blooms of large scyphomedusae and cubomedusae receive most public attention owing to effects on tourism (e.g., stinging swimmers), commerce, and fisheries, relatively little attention is given to the inconspicuous benthic polypoid stage. This is particularly troubling when considering the widespread translocation of some invasive marine jellyfish. The transport of benthic polyps (via ships, barges, and offshore drilling platforms) is theorized to be the most likely way in which invasive jellies are globally transported. Yet given the extremely small size and cryptic nature of most benthic polyps, identifying and tracking them in the field amongst the larger communities of fouling organisms is extremely difficult. To this end, we have developed a rapid molecular assay for detecting benthic jellyfish polyps from three scyphozoan genera in the Gulf of Mexico. One of these (Phyllorhiza spp.) is an invasive scyphozoan established in the Gulf of Mexico and is theorized to have been spread worldwide as a fouling organism on the hulls of cargo ships, while the other two (U.S. Chrysaora sp. and Gulf of Mexico Aurelia spp.) are local blooming animals that have shown recent numerical increases in the Gulf of Mexico. This method involves a multiplex Real-Time Polymerase Chain Reaction (PCR) assay using Taqman© probes that can be run on DNA extracted from whole-community scrapings of benthic surfaces, such as boat hulls, dock pilings, oilrigs, and settling plates. Specificity tests indicated that all Taqman© probes were successful against all individuals of target taxa, but not against 17 non-target local and worldwide scyphozoan and hydro-zoan species. Tests showed all probes to be extremely sensitive, reacting to as few as 50 copies of template DNA, with one (Chrysaora sp.) reacting to as few as 10 copies. The assay correctly identified individual polyps of Aurelia sp. and Chrysaora sp. The use of this Taqman© assay on tissue collected from whole benthic scrapings should allow screening of incoming ships to the Gulf of Mexico for the invasive P. punctata, and locating and studying the cryptic benthic stages of northern Gulf of Mexico jellyfish, which will lead to a better understanding of the overall population distribution and bloom dynamics of medusae.

Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abed-Navandi, A. & R. Kikinger, 2007. First record of the tropical scyphomedusa Phyllorhiza punctata von Len-denfeld, 1884 (Cnidaria: Rhizostomeae) in the central Mediterranean Sea. Aquatic Invasions 2: 391–394.

    Article  Google Scholar 

  • Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D. J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman and Hall, London.

    Google Scholar 

  • Ausubel, F. M., R. Brent, R. F. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl (eds), 1989. Current Protocols in Molecular Biology. Wiley and Sons, New York.

    Google Scholar 

  • Bayha, K. M., 2005. The molecular systematics and population genetics of four coastal ctenophores and scyphozoan jellyfish of the U.S. Atlantic and Gulf of Mexico. PhD Dissertation, The University of Delaware, Newark.

    Google Scholar 

  • Bolton, T. F. & W. M. Graham, 2004. Morphological variation among populations of an invasive jellyfish. Marine Ecology Progress Series 278: 125–139.

    Article  Google Scholar 

  • Bridge, D., C. W. Cunnigham, B. Schierwater, R. DeSalle & L. W. Buss, 1992. Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proceedings of the National Academy of Sciences USA 89: 8750–8753.

    Article  CAS  Google Scholar 

  • Brodeur, R. D., H. Sugisaki & G. L. Hunt, 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233: 89–103.

    Article  Google Scholar 

  • Cargo, D. G. & L. P. Schultz, 1966. Notes on the biology of the sea nettle, Chrysaora quinquecirrha, in Chesapeake Bay. Chesapeake Science 7: 95–100.

    Article  Google Scholar 

  • Colin, S. P. & P. Kremer, 2002. Population maintenance of the scyphozoan Cyanea sp. settled planulae and the distribution of medusae in the Niantic River, Connecticut, USA. Estuaries 25: 70–75.

    Article  Google Scholar 

  • Dawson, M. N., 2005. Incipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-esat Australia. Journal of Biogeography 32: 515–533.

    Google Scholar 

  • Dawson, M. N. & D. K. Jacobs, 2001. Molecular evidence for cryptic species of Aurelia aurita (Cnidara, Scyphozoa). Biological Bulletin 200: 92–96.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, M. N., A. Sen Gupta & M. H. England, 2005. Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryp-togenic species. Proceedings of the National Academy of Sciences USA 102: 11968–11973.

    Article  CAS  Google Scholar 

  • Frischer, M. E., J. M. Danforth, L. C. Tyner, J. R. Leverone, D. C. Marelli, W. S. Arnold & N. J. Blake, 2000. Development of an Argopecten-specific 18S rRNA targeted genetic probe. Marine Biotechnology 2: 11–20.

    PubMed  CAS  Google Scholar 

  • Graham, W. M. & K. M. Bayha, 2007. Biological invasions by marine jellyfish. In Nentwig, W. (ed.), Ecological Studies, Volume 193: Biological Invasions. Springer-Verlag, Berlin Heidelberg: 239–255.

    Google Scholar 

  • Graham, W. M., D. L. Martin, D. L. Felder, V. L. Asper & H. M. Perry, 2003. Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biological Invasions 5: 53–69.

    Article  Google Scholar 

  • Graves, J. E., M. J. Curtis, P. A. Oeth & R. S. Waples, 1990. Biochemical genetics of southern California basses of the genus Paralabrax: specific identification of fresh and ethanol-preserved individual eggs and early larvae. Fisheries Bulletin 88: 59–66.

    Google Scholar 

  • Hebert, P. D. N., S. Ratnasingham & J. R. DeWaard, 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely elated species. Proceedings of the Royal Society B, Biological Sciences 270: S96–S99.

    Article  PubMed  CAS  Google Scholar 

  • Holland, B. S., 2000. Genetics of marine bioinvasions. Hydrobiologia 420: 63–71.

    Google Scholar 

  • Holland, B. S., M. N. Dawson, G. L. Crow & D. K. Hofmann, 2004. Global phylogeny of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Marine Biology 145: 1119–1128.

    Article  Google Scholar 

  • Johnson, D. R., H. M. Perry & W. M. Graham, 2005. Using nowcast model currents to explore transport of non-indigenous jellyfish into the Gulf of Mexico. Marine Ecology Progress Series 305: 139–146.

    Article  Google Scholar 

  • Kawahara, M., S. Uye, K. Ohtsu & H. Iizumi, 2006. Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomae) in East Asian waters. Marine Ecology Progress Series 307: 161–173.

    Article  Google Scholar 

  • Kideys, A. E., 2002. Fall and rise of the Black Sea ecosystem. Science 297: 1482–1484.

    Google Scholar 

  • Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.

    Google Scholar 

  • Miyake, H., M. Terazaki & Y. Kakinuma, 2002. On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. Journal of Oceanography 58: 451–459.

    Article  Google Scholar 

  • Naimudden, M. & K. Nishigaki, 2003. Genome analysis technologies: towards species identification by genotype. Briefings in Functional Genomics and Proteomics 1: 356–371.

    Article  Google Scholar 

  • Popels, L. C., S. C. Cary, D. A. Hutchins, R. Forbes, F. Pus-tizzi, C. J. Gobler & K. J. Coyne, 2003. The use of quantitative polymerase chain reaction for the detection and enumeration of the harmful alga Aureococcus anophagefferens in environmental samples along the United States East Coast. Limnology and Oceanography: Methods 1: 92–102.

    Google Scholar 

  • Richardson, D. E., J. D. Vanwye, A. M. Exum, R. K. Cowen & D. L. Crawford, 2007. High-throughput species identification: from DNA isolation to bioinformatics. Marine Ecology Notes 7: 199–207.

    Article  CAS  Google Scholar 

  • Schiariti, A., M. Kawahara & H. W. Mianzan, Life cycle of the jellyfish Lychnorhiza lucernea Haeckel 1880 (Scyphozoa, Rhizostomeae). This volume.

    Google Scholar 

  • Schroth, W., G. Jarms, B. Streit & B. Schierwater, 2002. Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evolutionary Biology 2: 1.

    Article  PubMed  Google Scholar 

  • Taylor, M. I., C. Fox, I. Rico & C. Rico, 2002. Species-specific Taqman© probes for simultaneous identification of cod (Gadus morhua L.), haddock (Melanogrammus aeglefinus L.) and whiting (Merlangius merlangus L.). Molecular Ecology Notes 2: 599–601.

    Article  CAS  Google Scholar 

  • Ugozzoli, L. A., D. Chinn & K. Hamby, 2002. Fluorescent multicolor multiplex homogeneous assay for the simultaneous analysis of the two most common hemochromatosis mutations. Analytical Biochemistry 307: 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Ugozzoli, L. A., D. Latorra, R. Pucket, K. Arar & K. Hamby, 2004. Real-time genotyping with oligonucleotide probes containing locked nucleic acids. Analytical Biochemistry 324: 143–152.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov, M. E., E. A. Shushkina, E. I. Musayeva & P. Y. Sorokin, 1989. A newly acclimated species in the Black Sea: the ctenophore Mnemiopsis leidyi (Ctenophora: Lo-bata). Oceanology 29(2): 220–224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bayha, K.M., Graham, W.M. (2008). A new Taqman© PCR-based method for the detection and identification of scyphozoan jellyfish polyps. In: Pitt, K.A., Purcell, J.E. (eds) Jellyfish Blooms: Causes, Consequences, and Recent Advances. Developments in Hydrobiology, vol 206. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9749-2_14

Download citation

Publish with us

Policies and ethics