Skip to main content

Abstract

A coupled fluid-structure interaction model has been developed in order to study the vessel deformation and blood flow. This paper presents a methodology from which a smooth surface is obtained directly form segmented data obtained from DICOM images. An integrated solution for segmentation-meshing-analysis is also implemented based on the GiD platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fasel, J.H.D., Selle D., Evertsz, C.J.G., Terrier, F., Peitgen, H.O., Gailloud, P. Segmental anatomy of the liver: poor correlation with CT, Radiology. 206(1998):151–156.

    Google Scholar 

  2. Goldin, J.G., Ratib, O., Aberle, D.R. Contemporary cardiac imaging: an overview. J Thorac Imag. 15(4)(2000):218–29.

    Article  Google Scholar 

  3. Heidenreich, E., Mena A, Rodríguez J.F., Olmos, S., Doblaré M. Simulación de electrofisología cardiaca de imagenes médicas. Modelos numéricos específicos a pacientes. Congreso Annual de la Sociedad Española de Ingeniería Biomédica.,Pamplona, 6–8 November 2006. Pamplona, Spain.

    Google Scholar 

  4. Soudah, E., Rodríguez, J.F., Bordone, M., Heidenreich, E., Doblaré, M., Oñate, E. “Grid based decision support system for assisting clinical diagnosis and interventions in cardiovascular problems.” M-IS88,ISBN:88-95999-87-1, Vol 1, Vol 2. CIMNE, 2007.

    Google Scholar 

  5. Lohner, R., Parikh, P. Three dimensional grid generation by the advancing-front method. Int. J. Numeri. Meth. Fl., 8(1988):1135–1149, 1988.

    Article  Google Scholar 

  6. GiD - The personal pre and postprocessorhttp://www.gidhome.com/,CIMNE (2006).

  7. VTK File Formats,Kitware Inchttp://www.vtk.org/pdf/file-formats.pdf (2006).

  8. Ju, T., Losasso, F., Schaefer, S., Warren, J. Dual contouring of hermite data. In Proceedings of SIGGRAPH (2002), pp. 339–346.

    Google Scholar 

  9. Yongjie Zhang, Chandrajit Bajaj, Bong-Soo Sohn. “SM'03: Proceedings of the eighth ACM symposium on Solid modeling and applications” (2003), 286–291, ACM Press, New York, NY, USA.

    Book  Google Scholar 

  10. Lorensen, W.E., Cline, H.E. Marching cubes: A high reso-lution 3d surface construction algorithm. In Proceedings of SIGGRAPH, pages 163–169 (1987).

    Google Scholar 

  11. Humphrey, J.D. Cardiovascular solid mechanics, Springer, New York (2002).

    Google Scholar 

  12. Spencer, A.J.M. Theory of Invariants, in Continuum Physics, 239–253, Academic. New York (1954).

    Google Scholar 

  13. Flory, P.J. Thermodynamic relations for high elastic materials. Transactions of the Faraday Society, 57:829–838, (1961).

    Article  MathSciNet  Google Scholar 

  14. Simo, J.C., Taylor, R.L. Quasi-Incompresible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms, Comput Methods Appl Mech Engrg, 85:273–310, (1991).

    MATH  MathSciNet  Google Scholar 

  15. Weiss, J.A., Maker, B.N., Govindjee, S. Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comput Methods Appl Mech Engrg, 135:107–128, (1996).

    Article  MATH  Google Scholar 

  16. Holzapfel, G.A., Gasser, C.T. and Ogden, R.W. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity, 61:1–48, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  17. Ciarlet, PG. Mathematical Elasticity. Vol I: Three dimensional elasticity. Elsevier science publishers, (1991).

    Google Scholar 

  18. Ballyk, P.D., Walsh, C., Butany, J., Ojha, M. Compliance mismatch my promote graft-artery intimal hyperplasia by altering suture-line stresses. Journal of Biomechanics, 31: 229–237.

    Google Scholar 

  19. Nobile, F.: Numerical approximation of Fluid-Structure interaction problems with application to hemodynamics. PhD thesis-2001. E'cole Polytechnique Fédérale de Lausanne (EPFL) Thesis N 2458.

    Google Scholar 

  20. Oñate, E., Valls, A., García, J. “Computational Mechanics”, “FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers”, Springer Berlin / Heidelberg, 2006 ISSN: 0178-7675 (Paper) 1432–0924 (Online).

    Google Scholar 

  21. COMPASS Ingeniera y Sistemas SA.Tdyn. Environment for Fluid Dynamics (Navier Stokes equations), Turbulence, Heat Transfer, Advection of Species and Free surface simulation. Theoretical background and Tdyn 3D tutorial. March (2002).

    Google Scholar 

  22. Oñate, E., García, J., Idelsohn, S.R. and del Pin, F. “Computer Methods in Applied Mechanics and Engineering”, “Finite calculus formulation for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches” Elsevier,Laussane (Switzerland),2006,ISSN 0045–7825.

    Google Scholar 

  23. Oñate, E., Valls, A., García, J. “Journal of Computational Physics”, “Modeling Incompressible Flow at Low and High Reynolds Numbers via a Finite Calculus-Finite Element Approach”, Elsevier, New York (USA) 2007, ISSN 0021–9991.

    Google Scholar 

  24. Oñate, E., Valls, A., García, J. “International Journal for Numerical Methods in Fluids”, “Computation of turbulent flows using a finite calculus-finite element formulation”,John Wiley and Sons, London (GB) 2007, ISSN 0271-2091.

    Google Scholar 

  25. Formaggia, L., Nobile, F., Quarteroni, A., Veneziani, A. (1999). Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Visual. Sci. 2, 75–83

    Article  MATH  Google Scholar 

  26. Perktold, et al., “Pulsatile non-Newtonian Blood Flow in Three-Dimensional Carotid Bifurcation Models: A Numerical Study of Flow Phenomena Under Different Bifurcation Angles”, Nov. 1991, J. Biomed. Eng., Vol. 13, pp. 507–515.

    Article  Google Scholar 

  27. Soudah, E., Mussi, F. and Oñate, E. “Validation Of The One-Dimensional Numerical Model In The Ascending-Descending Aorta With Real Flow Profile”.III International Congress on Computational Bioengineering (ICCB 2007) Venezuela.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science +Business Media B.V.

About this chapter

Cite this chapter

Soudah, E. et al. (2009). Fluid-Structure Interaction Applied to Blood Flow Simulations. In: Tavares, J.M.R.S., Jorge, R.M.N. (eds) Advances in Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9086-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9086-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9085-1

  • Online ISBN: 978-1-4020-9086-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics