
Chapter 11
3D Reconstruction of the Retinal Arterial Tree
Using Subject-Specific Fundus Images

D. Liu, N.B. Wood, X.Y. Xu, N. Witt, A.D. Hughes, and Thom SAMcG

Abstract Systemic diseases, such as hypertension and diabetes, are associated with
changes in the retinal microvasculature. Although a number of studies have been
performed on the quantitative assessment of the geometrical patterns of the retinal
vasculature, previous work has been confined to 2 dimensional (2D) analyses. In
this paper, we present an approach to obtain a 3D reconstruction of the retinal arter-
ies from a pair of 2D retinal images acquired in vivo. A simple essential matrix
based self-calibration approach was employed for the “fundus camera-eye” system.
Vessel segmentation was performed using a semi-automatic approach and corre-
spondence between points from different images was calculated. The results of 3D
reconstruction show the centreline of retinal vessels and their 3D curvature clearly.
Three-dimensional reconstruction of the retinal vessels is feasible and may be useful
in future studies of the retinal vasculature in disease.

11.1 Introduction

The retina, which lies at the posterior fundal surface of the eye, has the highest
oxygen requirement per unit weight of any tissue in the body [10] and this makes it
particularly vulnerable to vascular insults impairing oxygen and nutrient supply.
Retinal vascular anatomy and net-work structure are adversely affected by high
blood pressure, diabetes mellitus, ageing and atherosclerosis. Diabetic eye disease is
one of the commonest causes of blindness in UK. A number of studies have shown
that generalized arteriolar narrowing and retinopathy are associated with in-creased
risk of stroke, ischaemic heart disease, heart failure, renal dysfunction and cardio-
vascular mortality [13]. Therefore, quantitative assessment of the retinal vascular
network is very important.
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The geometric patterns of the retinal microvascular network are readily observed
in vivo using fundal photography [12]. However, quantitative analysis of the geo-
metrical patterns requires vessel segmentation and reconstruction. The reconstruc-
tion of the retina, especially the area of optic disc, has been performed by several
researchers [6, 15], but most pathological changes in the microvasculature occur
away from this region.

3D reconstruction of the retinal vascular tree from fundal images is a consid-
erable challenge and only a few such attempts have been made so far [9]. When
subject-specific retinal images are obtained with a fundus camera, the intrinsic
parameters of the fundus camera-eye system will be altered by the relative displace-
ment between the camera and the eye of the subject. These changes can be reduced
by acquiring retinal images with relatively small displacements of the camera in a
plane which may be assumed parallel with the surface of the lens. Consequently
the intrinsic parameters may be assumed to be fixed. The retinal vessels of interest
can be segmented using a semi-automatic approach [8] and the point-by-point cor-
respondence between different images can also be calculated. In order to acquire a
metric reconstruction result, an essential matrix based self-calibration approach was
performed to estimate the intrinsic parameters of the “fundus camera-eye” optical
system. For this the pixels of the camera-eye system are assumed to be nearly per-
fectly rectangular (which means that the aspect ratio is considered to be one and
there is no skew) and the principal point of the camera-eye system is assumed to lie
at the centre of the final retinal image. With these assumptions the self-calibration
approach can be reduced to a simple system and a final metric 3D reconstruction
can be recovered after retrieving the projection matrix from the essential matrix.

11.2 Methodology

11.2.1 Image Acquisition

The retinal images for reconstruction were obtained in a normal subject following
mydriasis with tropicamide (1% eye drops) using a commercial retinal fundus cam-
era (Zeiss FF 450+ with a 30◦ field of view (Fig. 11.1). The fundus camera is a
specialized low power microscope with an attached camera designed to photograph
the interior surface of the eye, including the retina, optic disc, macula, and other
structures. Digitized images were captured using a CCD camera and transferred to
a PC for analysis. The principle of the paired image acquisition is illustrated in
Fig. 11.2 and a stereo (approximate) pair of retinal images is shown in Fig. 11.3.

Although the eye and fundus camera are very complex, they are combined and
simplified as one single lens in the analysis described here. Because this special
system combines the eye and the fundus camera, the displacement between them,
such as the change in relative distance and rotation, will alter the intrinsic parameters
of the combined eye-camera system (Fig. 11.2). In order to minimize these changes,
the distance between the camera and eye was held approximately constant and only a
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Fig. 11.1 Retinal imaging
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Fig. 11.2 Schematic diagram illustrating the approach to retinal imaging

Fig. 11.3 A stereo pair of retinal images for reconstruction
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small relative displacement of the fundus camera was made when the retinal images
were acquired. Retinal images were acquired with a resolution of 1,280× 1,030
pixels but were reduced to 499×402 pixels prior to analysis in order to reduce the
computational time.

11.2.2 Feature Points Extraction and Vessel Segmentation

Depending on the theory of 3D reconstruction from 2D images, two images of a sin-
gle scene are related by the epipolar geometry, which may be represented by a 3×3
singular matrix called the fundamental matrix F . It captures all geometric informa-
tion contained in the two images, and must first be estimated for the reconstruction.
A standard linear camera calibration matrix K has the following entries:

K =

⎡
⎣ f s u0

0 δ f v0
0 0 1

⎤
⎦

where f is the focal length in pixels and δ is the aspect ratio. (u0, v0) are the coor-
dinates of the principal points, and s is the skew factor which is zero for rectangular
pixels.

Generally in order to obtain the fundamental matrix F , at least 7 correspond-
ing fiducial points (i.e. at bifurcations) should be obtained. In fact, more than
seven matches are required for an accurate estimation. Therefore a semi-automatic
method [8] was used to perform the feature points extraction and vessel segmen-
tation by scale-space analysis of the 1st and 2nd derivatives of the image intensity
profiles (Fig. 11.4). The coordinates of the individual pixels corresponding to the
centrelines of the segmented vessels are recorded. Because of the limited resolu-
tion of the fundus camera, only trunk branches of retinal vessels such as the 1st
to 4th generations were clear enough to be analyzed (Fig. 11.5). Matching points
were selected by an operator and are marked out in Fig. 11.6. If the same vessel
were segmented from different images, the correspondence between them could be
obtained.

Terminal

Bifurcation
Crossing

Fig. 11.4 Feature points extraction. Left: original retinal image; right: analyzed vessels
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Fig. 11.5 Vessel segmentation. Middle: original retinal images; left: the segmentation result of the
red marked vessels; right: the recorded vascular centreline points showing the vessel sect in the
white rectangle area

Fig. 11.6 Retinal images with marked corresponding points

11.2.3 Estimation of Epipolar Geometry

Based on the marked corresponding points (crossing and bifurcation points), the
fundamental matrix F was recovered by applying the gold standard algorithm devel-
oped by Hartley and Zisserman [5] by minimizing the re-projection geometric error:

∑
i

d(xi, x̂i)
2 +d(x′i, x̂

′
i)

2 (11.1)

where xi(ui, vi)↔ x′i(u
′
i,v
′
i) are the marked correspondences, and x̂i ↔ x̂′i are the

estimated correspondences that satisfy x̂iFx̂′i = 0 exactly for rank-2 estimated fun-
damental matrix F .

The gold standard algorithm was implemented by taking the following steps:

1. Obtain the initial estimated rank 2 fundamental matrix F̂ using the normalized
8-points algorithm [3]:

– Normalization: transform the corresponding points according to x̂i = T xi and
x̂′i = T ′x′i, where T and T ′ are normalized transforms consisting of a translation
and scaling.
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– Find the fundamental matrix F̂ corresponding to the matches x̂i ↔ x̂′i with
a linear solution and enforce the rank 2 constraint to it by Singular Value
Decomposition (SVD).

– Set final fundamental matrix F = T ′TF̂T , where superscript T represents the
transpose of the vector.

2. Compute an initial estimated subsidiary variables {x̂i↔ x̂′i} as follows:

– Define two projection matrices as P = [I |0 ] and P′ = [[e′]×F |e′ ], where e′,
the epipole of the second image, could be obtained from F .

– From the correspondence xi↔ x′i, the 3D points X̂i are obtained by an iterative
linear-eigen triangulation method [4] in order to save computational cost.

– The projective correspondence consistent with F is obtained by x̂i = PX̂i, x̂′i =
P′X̂i.

3. Minimize the cost function in Eq. (11.1) by varying P′ = [M|t] and X̂i with the
Levenberg-Marquardt algorithm.

4. Compute the fundamental matrix F as F = [t]×M.

This process of estimating the fundamental matrix is effectively equivalent to a pro-
jective reconstruction. Epipolar lines of the two retinal images calculated by the
above algorithm are shown in Fig. 11.7.

11.2.4 Self-Calibration

In principle, a projective reconstruction can be obtained without the calibration
matrix based on the fundamental matrix, F , but, in practice, due to the ambigu-
ity of projective reconstruction, results may not be sufficiently accurate. Therefore
the 3D reconstruction was made on the basis of a metric projection. It is known that
a metric reconstruction of a scene may be computed by using the essential matrix E
which could be derived from the calibration matrix K [5]:
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Fig. 11.7 The epipolar lines of the two retinal images
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E = KT FK (11.2)

For the special fundus camera-eye system, a general photogrammetric calibration
method, which depends on a calibration object with a known 3-D geometry [14,16],
is not available. Instead a self-calibration method was employed. Since the image
acquisition process was specially designed to minimize alteration of the camera-
eye system, we can assume that the intrinsic parameters of the camera-eye system
remained constant, and the pixels could be considered as nearly perfectly rectan-
gular with an aspect ratio of 1 and no skew. The principal point of the camera-eye
system is assumed to be at the centre of the final retinal image. Therefore the only
unknown parameter of the calibration matrix is the focal length.

It has been recognized that if nk is the number of intrinsic parameters known
in all views and n f is the unknown but constant intrinsic parameter, the number of
views, m, required for self-calibration will be:

mnk +(m−1)n f ≥ 8 (11.3)

Therefore, a minimum of two views is required in this case [11].
A self-calibration method, based on the characteristics of the essential matrix E,

was used to recover the unknown focal length: two of the three singular values of E
should be identical and the other should be zero [11]. The cost function:

C = ω12
σ1−σ2

σ2
(11.4)

was minimized by a direct search algorithm. σ1 > σ2 are the non-zero singular
values of E = KT FK, and ω12 is a weighting factor which represents the degree of
confidence in the estimation of the fundamental matrix F . There are several possible
choices for ω12: (i) the residual of the estimation of F – the inverse of the mean
geometric distance between the image points and their corresponding epipolar lines,
(ii) the number of points used in the computation of F , and (iii) simply set it to
one [1]. After obtaining the focal length by this self-calibration method, the essential
matrix E could be calculated from Eq. (11.2).

Apart from sensitivity to the noise of images, the application of self-calibration
is always dependent on the issue of initialization. Since the nonlinear minimization
is used for self-calibration, convergence to the global minimum can be guaranteed
only if the algorithm is initialized properly. Although this algorithm has a good
global convergence according to Fusiello [2], we still employed a planar chessboard
based photogrammetric calibration approach [7] to generate initial values for self-
calibration. A series of images of a 2-D chessboard plane were acquired by moving
and rotating the fundus camera (Fig. 11.8). The chessboard should not be exactly
parallel to the image plane, because the calibration method applied here depends on
the vanishing points. Otherwise, the vanishing points for the horizontal and vertical
lines of the planar chessboard would both be at infinity, and no solution would exist
(Fig. 11.9). The guessed values for K here are based only on the optics of the fundus
camera. Therefore, it does not include the optics of eye, but should be close enough
to the values for the whole optical system.
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Fig. 11.8 Planar chessboard used for calibration

Vanishing point 1

Vanishing point 2

Fig. 11.9 Vanishing points of a perspective chessboard

11.2.5 Recovery of the Projection Matrix

The corresponding points xi↔ x′i in the 2D images and the unknown 3D points, Xi,
on the object have the relationship:

xi = PXi, x′i = P′Xi (11.5)

here P and P′ are the two projective matrices. If the essential matrix E of the
camera-eye system was obtained, the matrices P and P′ could be retrieved from
E as follows [5]:
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1. Suppose the origin of the coordinate system is at the first camera centre, then
the two projection matrices could be factorized as P = K[I |0 ] and P′ = K[R |t ],
where R and t are the 3D displacements (rotation and translation) from the global
coordinate system to the camera coordinate system. If the calibration matrix K
was known, its inverse can be applied to the points xi and x′i to obtain their nor-
malized coordinates:

x̄i = K−1xi = [I | 0 ]Xi, x̄′i = K−1x′i = [R | t ]Xi

Thus the corresponding normalized projection matrices are

P̄ = [I | 0 ], P̄′ = [R | t ]

2. The essential matrix can be calculated from Eq. (11.2), or

expressed as E = [t]×R = SR

where S is the skew-symmetric matrix of t.
Let the SVD of E be UDV T where D = diag(k, k, 0), then the possible factor-
ization of E = SR is one of the following:

S = UZUT ; R = UWV T or UW TV T

where

Z =

⎡
⎣ 0 1 0
−1 0 0
0 0 1

⎤
⎦ , W =

⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦

Hence the normalized projection matrix P̄′ has four possible choices based on
SVD of E as follows:

P̄′ = [UWV T |+u3 ] or [UWV T |−u3 ] or

[UW TV T |+u3 ] or [UW TV T |−u3 ]

here u3 = U(0,0,1)T, the last column of U .
3. Finally the P and P′ can be calculated by

P = KP̄ and P′ = KP̄′.

Based on the fact that reconstructed points should be in front of both cameras,
the correct solution may be determined by testing a single point if it is in front of
both cameras.
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At the same time the extrinsic parameters, the rotation axis l and the angle of
rotation λ may be obtained as:

l = (R32−R23,R13−R31,R21−R12)T (11.6)

λ = arccos
(

trace(R)−1
2

)
(11.7)

The projection matrix P and P′ are computed according to the essential matrix E
obtained above.

11.2.6 Parameter Refinement

Based on the corresponding points obtained from vessel segmentation, the extrinsic
parameters R and t, and the intrinsic parameter f were refined by minimizing the
first-order geometric error cost function using the Levenberg-Marquardt algorithm.

Cr = ∑
i

(x′iF̃xi)2

(F̃xi)2
1 +(F̃xi)2

2 +(F̃T x′i)
2
1 +(F̃T x′i)

2
2

(11.8)

Here the fundamental matrix F̃ was calculated as

F̃ = K−T [t]×R′K−1 (11.9)

where R′ is the rotation matrix calculated from Rodrigues’ formula [5]

R′ = I + sinλ [
l
‖l‖ ]×+(1− cosλ )[

l
‖l‖ ]

2
×. (11.10)

After this refinement, the final projection matrix could be obtained from R, t and K.
The corresponding epipolar lines are displayed in Fig. 11.10.
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Fig. 11.10 The epipolar lines after parameter refinement
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11.2.7 Reconstruction of 3D Points

Knowing the projection matrices for two images separately, the 3D coordinates of
each point, Xi, can be calculated. In order to obtain a smooth reconstruction, the cor-
responding points from vessel segmentation were smoothed and interpolated using
cubic splines.

An iterative linear method (Iterative-Eigen) [4] was used to perform the triangu-
lation of 3D points. Equation (11.5) can be written as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
wi, j

(ui p3T Xi, j− p1T Xi, j) = 0
1

wi, j
(vi p3T Xi, j− p2T Xi, j) = 0

1
w′i, j

(u′i p
′3T Xi, j− p′1T Xi, j) = 0

1
w′i, j

(v′i p
′3T Xi, j− p′2T Xi, j) = 0

(11.11)

where piT and p′iT are the ith rows of P and P′ respectively. wi, j and w′i, j are the
weight factors at the jth step of iteration which have the form:

wi, j = p3T Xi, j−1, w′i, j = p′3T Xi, j−1 (11.12)

At the beginning of the iteration wi,0 and w′i,0 were set to be 1 in order to find the
initial solution of Xi,0.

All calculations were performed using Matlab (The Mathworks). The param-
eter refinement was based on the codes from the Oxford Brookes toolbox
(http://cms.brookes.ac.uk/staff/PhilipTorr/). The flowchart of a complete recon-
struction process is shown in Fig. 11.11.

11.3 Experiment and Results

A cylinder with a chessboard attached to its external surface was adopted to under-
stand and obtain a preliminary validation of the metric projective reconstruction
procedure. The focal length and aperture of the camera (Nikon D50) were fixed
when pictures of the chessboard were taken, which means that the intrinsic param-
eters of the camera optical system were kept constant. Four images were acquired
and used (Fig. 11.12 left) for self-calibration. The corners of the chessboard were
extracted automatically for reconstruction (Fig. 11.12 right). The epipolar geometry
between the image pairs was calculated by the normalized 8-points algorithm. After
self-calibration, the 3D coordinates of the corners of the chessboard were calculated
by the Iterative-Eigen triangulation (Fig. 11.13). Although the final triangulation
of the 3D object coordinates was only based on two images, the self-calibration
could utilize more images to improve the accuracy of the estimated camera intrinsic
parameters. Quantitative comparison between the measurements and reconstruction
results is summarized in Table 11.1. It is clear that with good estimation of the
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Fig. 11.12 Object image (left) and image with extracted corners (right)

epipolar geometry and self-calibration, the reconstruction procedure implemented
here is capable of recovering very well most of the geometric features such as height
to length ratio (a/b), angles (α and β) and curvature (r/b). The percentage error in
curvature (r/b) seems to be larger than that in the other parameters, possibly due to
the uncorrected distortion in the images and the smaller value for r making it more
sensitive to errors.

Figure 11.14 shows the reconstruction results of the segmented vessels in the
central region of the image presented in Fig. 11.5. Figure 11.14a is the 2-D view of
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Fig. 11.13 Three-dimensional view of the reconstruction result (top left) and its side view (top
right). Geometry model of the cylindrical chessboard (bottom left) and reconstruction result with
angle measurements in ICEM (bottom right)

Table 11.1 Quantitative comparison of the reconstructed results and measurements. See Fig. 11.13
for definition of geometric parameters

Measured (M) Reconstructed (R) Error = |(M−R)/M|∗100%

a/b 1.1951 1.1778 1.45%
r/b 0.8415 0.7771 7.66%
α 90 89.7 0.3%
β 90 88.575 1.58%

the recovered centreline points of the marked 3-D vessels. The numbers (accord-
ing to Fig. 11.5) indicate which segments of the marked vessels are retrieved.
Figure 11.14b is the 3-D view of the reconstructed vessel centrelines. Figure 11.14c
and d show the side projections of the centrelines of the reconstructed vessels. These
preliminary results demonstrate that 3D reconstruction of the retinal vessels is fea-
sible and may be useful in future studies of the retinal microvasculature in health
and disease. Future studies will attempt to validate the 3-D reconstruction ex vivo
using a model eye with known geometry and in vivo using ultrasound to measure
geometric features.



200 D. Liu et al.

–3

0

3

–3

0

3

3

2

1

0

−1

−2

−3−3 −2 −1 0

30
31

29

28

14
7

15

3 6

12
2

1 13

25

1 2 3

0

2

4

6

8

10

xy

z

(a) (b)

–3 0 3
4

5

6

7

8

9

10

x

z

–303
4

5

6

7

8

9

10

y

z

(c) (d)

Fig. 11.14 Three-dimensional reconstruction results of the centre-lines of the marked retinal ves-
sels: (a) top view of the reconstructed vessels; (b) 3D view; (c), (d) side projections

References

1. Dick A, Torr P, Cipolla R (2000) Automatic 3d modelling of architecture. In: Proceedings of
11th British Machine Vision Conference (BMVC’00), Bristol, pp 372–381.

2. Fusiello A (2001) A new autocalibration algorithm: experimental evaluation. Computer anal-
ysis of Images and Patterns 2001, Lecture Notes in Computer Science 2124: 717–724.

3. Hartley RI (1997) In defense of the eight-point algorithm. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 19: 580–595.

4. Hartley RI, Sturm P (1997) Triangulation. Computer Vision and Image Understanding 68(2):
146–157.

5. Hartley R, Zisserman A (2003) Multiple View Geometry in Computer Vision. Cambridge:
Cambridge University Press.

6. Kai Z, Xu X, Zhang L, Wang GP (2005) Stereo matching and 3-D reconstruction for optic
disk images. CVBIA, LNCS 3765: 517–525.

7. Liu Y, Wu YX, Wu MP, Hu XP (2004) Planar vanishing points based camera calibration.
In: Proceedings of the Third International Conference on Image and Graphics (ICIG’04),
Hong Kong, China, pp 460–463.



11 3D Reconstruction of the Retinal Arterial Tree 201

8. Martinez-Perez ME, Hughes AD, Stanton AV, Thom SA, Chapman N, Bharath AA, Parker KH
(2002) Retinal vascular tree morphology: a semi-automatic quantification. IEEE Transactions
on Biomedical Engineering 49(8): 912–917.

9. Espinosa-Romero A, Martinez-Perez ME (2005) Optical 3D reconstruction of retinal blood
vessels from a sequence of views. In: Proceedings of SPIE 5776, Merida, Mexico, pp 605–612.

10. Masters B (2004) Fractal analysis of the vascular tree in the human retina. Annual Review of
Biomedical Engineering 6: 427–452.

11. Mendonca PRS, Cipolla R (1999) A simple technique for self-calibration. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado,
pp 500–505.

12. Stanton AV, Wasan B, Cerutti A, Ford S, Marsh R, Sever PP, Thom SA, Hughes AD (1995)
Vascular network changes in the retina with age and hypertension. Journal of Hypertension
13:1724–1728.

13. Wong TY, McIntosh R (2005) Systemic associations of retinal microvascular signs: a review
of recent population-based studies. Ophthalmic and Physiological Optics 25: 195–204.

14. Xu J, Chutatape O (2003) Comparative study of two calibration methods on fundus camera. In:
Proceedings of the 25 Annual International Conference of the IEEE EMBS, Cancun, Mexico,
pp 17–21.

15. Xu J, Chutatape O (2006) Auto-adjusted 3D optic disk viewing from low-resolution stereo
fundus image. Computers in Biology and Medicine 36: 921–940.

16. Zhang Z (1999) Flexible camera calibration by viewing a plane from unknown orientations.
In: Proceedings of the International Conference on Computer Vision, Corfu, Greece, pp 666–
673.




