Skip to main content

Design and Assembly of Functional Light-Harvesting Complexes

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Two complementary model systems are described, which are used to study the assembly of functional light-harvesting (LH) complexes. One system is based on rational design of cofactor-binding motifs and their capacity to assembly model LH2 complexes via expression in native-like membranes. The second takes advantage of the highly reversible self-assembly of the LH1 complex in artificial membranes and provides a convenient tool for design of model complexes with modified cofactors. In essence, re-design of the cofactor binding pockets in LH2 enables exploration of the underlying principles that enable particular amino acid combinations to sustain stable and functional assembly of LH-active arrays. Cofactor-binding motifs predicted in silico are tested in the context of the LH2 complex. In this way, H-bonding at the bacteriochlorophyll (BChl)/protein interface and the presence of aromatic residues were identified as critical for assembly of BChl and carotenoid (Crt). Moreover, the volumes of particular residues in the vicinity of BChl were shown to be critical for fine-tuning the spectroscopic properties. The LH1 reconstitution system, on the other hand, provides new information on the cofactor-related determinants of formation and functioning of this LH complex. Using the excitation trap approach, the coupling between BChl and excitation delocalization over the LH1 ring could be evaluated, while, by the replacement of Crts, their contribution to the assembly was assessed and for the first time a Crt-binding intermediate of LH1 assembly was identified. A new challenge is to make the two model approaches more interchangeable, thus allowing us to compare the same factors in different LH complexes, and eventually to identify on a molecular level what renders these apparently similar complexes so different.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

(B)Chl:

(bacterio)chlorophyll

AA:

amino acid

CD:

circular dichroism

Crt:

ccarotenoid

ET:

energy transfer

H-bond:

hydrogen-bond

IR:

infra-red

LDAO:

lauryl dimethyl amine oxide

LH:

light-harvesting

PS I:

Photosystem I

PS II:

Photosystem II

Rba. :

Rhodobacter

RC:

reaction center

Rsp. :

Rhodospirillum

TM:

transmembrane

TMH:

transmembrane helix

WT:

wild type

β-OG:

n-octyl β-D-glucopyranoside

References

  • Akahane J, Rondonuwu FS, Fiedor L, Watanabe Y, Koyama Y (2004) Dependence of singlet-energy transfer on the conjugation length of carotenoids reconstituted into the LH1 complex from Rhodospirillum rubrum G9. Chem Phys Lett 393: 184–191

    CAS  Google Scholar 

  • Akiyama M, Nagashima KVP, Hara M, Wakao N, Tominaga K, Kise H and Kobayashi M (1999) Stoichiometries of LH1/RC determined by the molar ratio of BChl/BPhe analyzed by HPLC in seven species of purple bacteria containing LH1 only. Photomed Photobiol 21: 105–110

    CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1988) Structure of the reaction center from Rhodobacter sphaeroides R26 — Protein cofactor (Quinones and Fe2+) interactions. Proc Natl Acad Sci USA 85: 8487–8491

    PubMed  CAS  Google Scholar 

  • Allen JP, Artz K, Lin X, Williams JC, Ivancich A, Albouy D, Mattioli TA, Fetsch A, Kuhn M and Lubitz W (1996) Effects of hydrogen bonding to abacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 35: 6612–6619

    PubMed  CAS  Google Scholar 

  • Arluison V, Seguin J and Robert B (2002) Biochemical characterization of the dissociated forms from the core antenna proteins from purple bacteria. Biochemistry 41: 11812–11819

    PubMed  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, van der Werf KO, Otto C, Hunter CN and Olsen CN (2004) Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy. J Biol Chem 279: 21327–21333

    PubMed  CAS  Google Scholar 

  • Balaban TS (2003) Hypothesis — Are syn-ligated (bacterio)chlorophyll dimers energetic traps in light-harvesting systems? FEBS Lett. 545: 21327–21333

    Google Scholar 

  • Balaban TS, Fromme P, Holzwarth AR, Krauß N and Prokhorenko VI (2002) Relevance of diastereotopic ligation of magnesium atoms of chlorophylls in Photosystem I. Biochim Biophys Acta 1556: 197–207

    PubMed  CAS  Google Scholar 

  • Bandilla M, Ucker B, Ram M, Simonin II, Gelhaye E, McDermott G, Cogdell RJ and Scheer H (1998) Reconstitution of the B800 bacteriochlorophylls in the peripheral light harvesting complex B800-850 of Rhodobacter sphaeroides 2.4.1 with BChl a and modified (bacterio-)chlorophylls. Biochim Biophys Acta 1364: 390–402

    PubMed  CAS  Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandona D (1999) Mutational analysis ofahigherplant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056–10061

    PubMed  CAS  Google Scholar 

  • Bolt JD, Hunter CN, Niederman RA and Sauer K (1981) Linear and circular dichroism and fluorescence polarization of the B875 light-harvesting bacteriochlorophyll-protein complex from Rhodopseudomonas sphaeroides. Photochem Photobiol 653–656

    Google Scholar 

  • Bradforth SE, Jimenez R, van Mourik F, van Grondelle R and Fleming GR (1995) Excitation transfer in the core light-harvesting complex (LH-1) of Rhodobacter sphaeroides: An ultrafast fluorescence depolarization and annihilation study. J Phys Chem 99: 16179–16191

    CAS  Google Scholar 

  • Braun P and Scherz A (1991) Polypeptides and bacteriochlorophyll organization in the light-harvesting complex B850 of Rhodobacter sphaeroides R-26.1. Biochemistry 30: 5177–5184

    PubMed  CAS  Google Scholar 

  • Braun P Olsen J, Strohmann B, Hunter CN and Scheer H (2002) Assembly of light-harvesting bacteriochlorophyll in a model transmembrane helix in its natural environment. J Mol Biol 318: 1085–1095

    PubMed  CAS  Google Scholar 

  • Braun P, Vegh A, Strohmann B, Hunter N, Robert B and Scheer H (2003) Hydrogen bonding between the C131 keto group of bacteriochlorophyll and intramembrane serine residue α 27 stabilizes LH2 antenna complex. Biochim Biophys Acta 1607: 19–26.

    PubMed  CAS  Google Scholar 

  • Chang MC, Callahan PM, Parkes-Loach PS, Cotton TM and Loach PA (1990) Spectroscopic characterization of the light-harvesting complex of Rhodospirillum rubrum and its structural subunit. Biochemistry 29: 421–429

    PubMed  CAS  Google Scholar 

  • Christensen RL (1999) The electronic states of carotenoids. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids (Advances in Photosynthesis and Respiration, Vol 8), pp 137–159. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Cogdell RJ and Scheer H (1985) Circular dichroism of light-harvesting complexes from purple photosynthetic bacteria. Photochem Photobiol 42: 669–678

    CAS  Google Scholar 

  • Cohen-Bazire G, and Stanier RY (1958) Specific inhibition of carotenoid synthesis in a photosynthetic bacterium and its physiological consequences. Nature 181: 250–252

    PubMed  CAS  Google Scholar 

  • Coleman WJ and Youvan DC (1990) Spectroscopic analysis of genetically modified photosynthetic reaction centers. Annu Rev Biophys Chem 19: 333–367

    Google Scholar 

  • Conroy MJ, Westerhuis W, Parkes-Loach PS, Loach PA, Hunter CN and Williamson MP (2000) The solution structure of the Rhodobacter sphaeroides LH 1β polypeptide reveals two helical domains separated by a flexible region: structural consequences for the LH1 complex. J Mol Biol 298: 83–94.

    PubMed  CAS  Google Scholar 

  • Croce R, Weiss S and Bassi R (1999) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 274: 29613–29623

    PubMed  CAS  Google Scholar 

  • Davis CM, Bustamante PL and Loach PA (1995) Reconstitution of the bacterial core light-harvesting complexes of Rhodobacter sphaeroides and Rhodospirillum rubrum with isolated α- and β-polypeptides, bacteriochlorophyll a, and carotenoid. J Biol Chem 270: 5793–5804

    PubMed  CAS  Google Scholar 

  • Davis CM, Parkes-Loach PS, Cook CK, Meadows KA, Bandilla M, Scheer H and Loach PA (1996) Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodobacter sphaeroides using reconstitution methodology with bacteriochlorophyll analogs. Biochemistry 35: 3072–3084

    PubMed  CAS  Google Scholar 

  • Davis CM, Bustamante PL, Todd JB, Parkes-Loach PS, McGlynn P, Olsen JD, McMaster L, Hunter CN and Loach PA (1997) Evaluation of structure-function relationships in the core light-harvesting complex of photosynthetic bacteria by reconstitution with mutant polypeptides. Biochemistry 36: 3671–3679

    PubMed  CAS  Google Scholar 

  • Dawkins DJ, Ferguson LA and Cogdell RJ (1988) The structure of the ‘core’ of the purple bacterial unit. In: Scheer H and Schneider S (eds) Photosynthetic Light Harvesting Systems pp 115–127. Walter de Gruyter, Berlin

    Google Scholar 

  • Desamero RZB, Chynwat V, van der Hoef I, Jansen FJ, Lugtenburg J, Gosztola D, Wasielewski MR, Cua A, Bocian DF and Frank HA (1998) Mechanism of energy transfer from carotenoids to bacteriochlorophyll: Light-harvesting by carotenoids having different extents of Ï€-electron conjugation incorporated into the B850 antenna complex from the carotenoidless bacterium Rhodobacter sphaeroides R-26.1. J Phys Chem 102: 8151–8162.

    CAS  Google Scholar 

  • Douglas B, McDaniel D and Alexander J (1994) Concepts and Models of Inorganic Chemistry. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Drews G (1996) Formation of the light-harvesting complex I (B870) of anoxygenic phototrophic purple bacteria. Arch Microbiol 166: 151–159

    PubMed  CAS  Google Scholar 

  • Fiedor L (2006) Hexacoordination of bacteriochlorophyll in photosynthetic antenna LH1. Biochemistry 45: 1910–1918

    PubMed  CAS  Google Scholar 

  • Fiedor L and Scheer H (2005) Trapping of an intermediate of LH1 complex assembly beyond the B820 subunit. J Biol Chem 280: 20921–20926

    PubMed  CAS  Google Scholar 

  • Fiedor L, Scheer H, Hunter CN, Tschirschwitz F, Voigt B, Ehlert J, Nibbering E, Leupold D and Elsaesser T (2000) Introduction of a 60 fs deactivation channel in the photosynthetic antenna LH 1 by Ni-Bacteriopheophytin a. Chem Phys Lett 319: 145–152

    CAS  Google Scholar 

  • Fiedor L, Leupold D, Teuchner K, Voigt B, Hunter CN, Scherz A and Scheer H (2001) Excitation trap approach to analyze size and pigment-pigment coupling: Reconstitution of LH 1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll. Biochemistry 40: 3737–3747

    PubMed  CAS  Google Scholar 

  • Fiedor L, Akahane J and Koyama Y (2004) Carotenoid-induced cooperative formation of bacterial photosynthetic LH 1 complex. Biochemistry 43: 16487–16496

    PubMed  CAS  Google Scholar 

  • Fowler GJ, Visschers RW, Grief GG, van Grondelle R and Hunter CN (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355: 848–850

    PubMed  CAS  Google Scholar 

  • Fowler GJ, Sockalingum GD, Robert B and Hunter CN (1994) Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at alpha-Tyr-44 and alpha-Tyr-45. Biochem J 299: 695–700

    PubMed  CAS  Google Scholar 

  • Francke C and Amesz J (1995) The size of the photosynthetic unit in purple bacteria. Photosynth Res 46: 347–352

    CAS  Google Scholar 

  • Frank HA (1999) Incorporation of carotenoids into reaction center and light-harvesting pigment-protein complexes. In: Frank HA, Young AJ, Britton G and Cogdell, RJ (eds) Photochemistry of Carotenoids (Advances in Photosynthesis and Respiration, Vol 8), pp 235–244. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frank HA, Chynwat V, Posteraro A, Hartwich G, Simonin I and Scheer, H (1996) Triplet state energy transfer between the primary donor and the carotenoid in Rhodobacter sphaeroides R-26.1 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene. Photochem Photobiol 64: 823–831.

    PubMed  CAS  Google Scholar 

  • Freer A, Prince S, Sauer K, Papiz M, Hawthornthwaite-Lawless A, McDermott G, Cogdell R and Isaacs NW (1996) Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure 4: 449–462

    PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P and Krauss N (2001) Structure of Photosystem l. Biochim Biophys Acta 1507: 5–31

    PubMed  CAS  Google Scholar 

  • Fyfe PK and Jones MR (2005) Lipids in and around photosynthetic reaction centres. Biochem Soc Trans 33: 924–930

    PubMed  CAS  Google Scholar 

  • Gall A, Fowler GJ, Hunter CN and Robert B (1997) Influence of the protein binding site on the absorption properties of the monomeric bacteriochlorophyll in Rhodobacter sphaeroides LH2 complex. Biochemistry 36: 16282–16287

    PubMed  CAS  Google Scholar 

  • Garcia-Martin A, Kwa LG, von Jan M, Robert B and Braun P (2005) H-bonding drives assembly of model bacteriochlorophyll protein in the native membrane. In: van der Est A and Bruce D (eds) Fundamental aspects to global phenomena, pp 138–40. Allen Press, Montréal

    Google Scholar 

  • Garcia-Martin A, Kwa LG, Strohmann B, Robert B, Holzwarth AR and Braun P (2006a) Structural role of (bacterio)chlorophyll ligated in the energetically unfavourable β-position. J Biol Chem 281: 10626–10634

    PubMed  CAS  Google Scholar 

  • Garcia-Martin A, Kwa LG, von Jan M, Hunter CN and Braun P (2006b) Assembly of model bacteriochlorophyll proteins in the native lipid environment. In: Grimm B, Porra W, Rüdiger W and Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Functions and Applications (Advances in Photosynthesis and Respiration, Vol 25), pp 365–396. Springer, Dordrecht

    Google Scholar 

  • Georgakopoulou S, Frese RN, Johnson E, Koolhaas C, Cogdell RJ, van Grondelle R and van der Zwan G (2002) Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J 82: 2184–2197

    PubMed  CAS  Google Scholar 

  • Griffiths M, Sistrom WR, Cohen-Bazire G and Stainer RY (1955) Functions of carotenoids in photosynthesis. Nature 176: 1211–1214

    PubMed  CAS  Google Scholar 

  • Hartwich G, Fiedor L, Simonin I, Cmiel E, Schäfer W, Noy D, Scherz A and Scheer H (1998) Metal-substituted bacteriochlorophylls. 1. Preparation and influence of metal and coordination on spectra. J Am Chem Soc 120: 3675–3683

    CAS  Google Scholar 

  • Heinemann B and Paulsen H (1999) Random mutations directed to transmembrane and loop domains of the light-harvesting chlorophyll a/b protein: Impact on pigment binding. Biochemistry 38: 14088–14093

    PubMed  CAS  Google Scholar 

  • Hofmann E, Wrench PM, Sharpies FP, Hiller RG, Weite W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–1791

    PubMed  CAS  Google Scholar 

  • Horn R, Paulsen H (2002) Folding in vitro of light-harvesting chlorophyll a/b protein is coupled with pigment binding. J Mol Biol 318: 547–556

    PubMed  CAS  Google Scholar 

  • Hu Q, Sturgis JN, Robert B, Delagrave S, Youvan DC and Niederman RA (1998) Hydrogen bonding and circular dichroism of bacteriochlorophylls in the Rhodobacter capsulatus light-harvesting 2 complex altered by combinatorial mutagenesis. Biochemistry 37: 10006–10015

    PubMed  CAS  Google Scholar 

  • Hunter CN (1995) Rings of light. Curr Biol 5: 826–828

    PubMed  CAS  Google Scholar 

  • Jiang L, Lai L (2002) CH…O hydrogen bonds at protein-protein interfaces. J Biol Chem 277: 37732–37740

    PubMed  CAS  Google Scholar 

  • Jones MR, Fowler GJ, Gibson LC, Grief GG, Olsen JD, Crielaard W and Hunter CN (1992) Mutants of Rhodobacter sphaeroides lacking one or more pigment-protein complexes and complementation with reaction-centre, LH1, and LH2 genes. Mol Microbiol 6: 1173–1184

    PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Ã… resolution. Nature 411: 909–917

    PubMed  CAS  Google Scholar 

  • Jungas C, Ranck J-L, Rigaud J-L, Joliot P and Verméglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J. 18: 534–542

    PubMed  CAS  Google Scholar 

  • Kania A and Fiedor L (2006) Steric control of bacteriochlorophyll ligation. J Am Chem Soc 128: 454–458

    PubMed  CAS  Google Scholar 

  • Karrasch S, Bullough PA and Ghosh R (1995) The 8.5 Ã… projection map of the light-harvesting complex from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14: 631–638

    PubMed  CAS  Google Scholar 

  • Kashiwada A, Nishino N, Wang Z-H, Nozawa T, Kobayashi M and Nango M (1999) Molecular assembly of bacteriochlorophyll a and its analogues by synthetic 4α-helix polypeptides. Chem Lett 28: 1301–1302

    Google Scholar 

  • Kehoe JW, Meadows KA, Parkes-Loach PS and Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 2. Determination of structural features that stabilize complex formation and their implications for the structure of the subunit complex. Biochemistry 37: 3418–3428

    PubMed  CAS  Google Scholar 

  • Kim J, Eichacker LA, Rüdiger W and Mullet JE (1994) Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing apoprotein stability. Plant Physiol. 104: 907–916

    PubMed  CAS  Google Scholar 

  • Koolhaas MH, Frese RN, Fowler GJ, Bibby TS, Georgakopoulou S, van der Zwan G, Hunter CN and van Grondelle R (1998) Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Biochemistry 37: 4693–4698

    CAS  Google Scholar 

  • Koyama Y, Kuki M, Andersson PO and Gillbro T (1996) Singlet excited states and the light-harvesting function of carotenoids in bacterial photosynthesis. Photochem Photobiol 63: 243–256

    CAS  Google Scholar 

  • Kwa LG, Garcia-Martin A, Vegh A, Strohmann B, Scheer H, Robert B and Braun P (2004) Hydrogen bonding in a model bacteriochlorophyll-binding site drives asssembly of light harvesting complex. J Biol Chem 279: 15067–15075

    PubMed  CAS  Google Scholar 

  • Lang HP and Hunter CN (1994) The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in Rhodobacter sphaeroides. Biochem J 298: 197–205

    PubMed  CAS  Google Scholar 

  • Lapouge K, Naveke A, Robert B, Scheer H and Sturgis JN (2000) Exchanging cofactors in the core antennae from purple bacteria: Structure and properties of Zn-bacteriopheophytin-containing LH1. Biochemistry 39: 1091–1099

    PubMed  CAS  Google Scholar 

  • Law CJ and Cogdell RJ (1998) The effect of chemical oxidation on the fluorescence of the LH1 (B880) complex from the purple bacterium Rhodobium marinum. FEBS Lett. 432: 27–30

    PubMed  CAS  Google Scholar 

  • Leonov H, Arkin IT (2005) A periodicity analysis of transmembrane helices. Bioinformatics 21: 2604–2610

    PubMed  CAS  Google Scholar 

  • Liebl U, Nitschke W, and Mattioli TA. (1996) Pigment-protein interactions in the antenna-reaction center complex of Heliobacillus mobilis. Photochem Photobiol 64: 38–45

    CAS  Google Scholar 

  • Linnanto J and Korppi-Tommola J. (2004) Structural and spectroscopic properties of Mg-bacteriochlorin and methyl bacteriochlorophyllides a, b, g, and h Studied by semiempirical, ab initio, and density functional molecular orbital methods. J Phys Chem A 108: 5872–5882

    CAS  Google Scholar 

  • Loach PA and Parkes-Loach PS (1995) Structure-function relationships in core light-harvesting complexes (LHI) as determined by characterization of the structural subunit and by reconstitution experiments. In: Blankenship RE, Madigan MT, and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 437–471. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Loach PA and Sekura DL (1968) Primary photochemistry and electron transport in Rhodospirillum rubrum. Biochemistry 7: 2642–2649

    PubMed  CAS  Google Scholar 

  • Loach PA, Sekura DL, Hadsell RM and Sterner A. (1970) Quantitative dissolution of the membrane and preparation of photoreceptor subunits from Rhodopseudomonas spheroides. Biochemistry 9: 724–733

    PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 ! resolution structure of Photosystem II. Nature 438: 1040–1044

    PubMed  CAS  Google Scholar 

  • Mackinnon R, von Heijne G (2006) Membranes. Curr Opin Struct Biol 16: 431

    CAS  Google Scholar 

  • Mattioli TA, Gray KA, Lutz M, Oesterhelt D and Robert B (1991) Resonance Raman characterization of Rhodobacter sphaeroides reaction centers bearing site-directed mutations at Tyrosine M210. Biochemistry 30: 1715–1721

    PubMed  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    CAS  Google Scholar 

  • Meadows KA, Parkes-Loach PS, Kehoe JW and Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 1. Minimal requirements for subunit formation. Biochemistry 37: 3411–3417

    PubMed  CAS  Google Scholar 

  • Moskalenko A, Toropygina O and Kuznetsova N (1996) Does the B820 subcomplex of the B880 complex retain carotenoids? Z. Naturforsch. 51: 309–318.

    CAS  Google Scholar 

  • Musewald C, Hartwich G, Lossau H, Gilch P, Pöllinger-Dammer F, Scheer H and Michel-Beyerle ME (1999) Ultrafast photophysics and photochemistry of [Ni]-bacteriochlorophyll a. J Phys Chem 103: 7055–7060

    CAS  Google Scholar 

  • Näveke A, Scheer H, Robert B and Sturgis J (1995) Influence of metal exchange on absorption spectra of the light harvesting complex of Rhodospirillum rubrum. In: Mathis P (ed) Progress in Photosynthesis, pp 1–5. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Nilsson J, Persson B and von Heijne G (2000) Consensus predictions of membrane protein topology. FEBS Lett 486: 267–269

    PubMed  CAS  Google Scholar 

  • Noguchi T, Hayashi H and Tasumi M (1990) Factors controlling the efficiency of energy transfer from carotenoids to bacteriochlorophyll in purple photosynthetic bacteria. Biochim Biophys Acta 1017: 280–290

    CAS  Google Scholar 

  • Olsen JD, Sturgis JN, Westerhuis WH, Fowler GJ, Hunter CN and Robert B (1997) Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides. Biochemistry 36: 12625–12632

    PubMed  CAS  Google Scholar 

  • Olsen JD, Robert B, Siebert CA, Bullough PA and Hunter CN (2003) Role of the C-terminal extrinsic region of the alpha polypeptide of the light-harvesting 2 complex of Rhodobacter sphaeroides: A domain swap study. Biochemistry 42: 15114–23

    PubMed  CAS  Google Scholar 

  • Pali T, Garab G, Horvath LI, and Kota Z. Functional significance of the lipid-protein interface in photosynthetic membranes. Cell Molec Life Sci 60: 1591–1606

    Google Scholar 

  • Pandit A, van Stokkum IHM, Georgakopoulu S, van der Zwan G, van Grondelle R (2003) Investigations of intermediates appearing in the reassociation of the light-harvesting 1 complex of Rhodospirillum rubrum. Photosynth Res 75: 235–248

    PubMed  CAS  Google Scholar 

  • Papagiannakis E, Kennis JTM, van Stokkum IHM, Cogdell RJ and van Grondelle R (2002) An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting. Proc Natl Acad Sci USA 99: 6017–6022

    PubMed  CAS  Google Scholar 

  • Parkes-Loach PS, Majeed AP, Law CJ and Loach PA (2004) Interactions stabilizing the structure of the core light-harvesting complex (LH1) of photosynthetic bacteria and its subunit (B820). Biochemistry 43: 7003–7016

    PubMed  CAS  Google Scholar 

  • Picorel R, Bélanger G and Gingras G (1983) Antenna holochrome B880 of Rhodospirillum rubrum S1. Pigment, phospholipid, and polypeptide composition. Biochemistry 22: 2491–2497

    CAS  Google Scholar 

  • Pilch M and Pawlikowski M (1998) Circular dichroism (CD) study of peridinin-chlorophyll a protein (PCP) complexes from marine dinoflagellate algae. J Chem Soc, Farady Trans 94: 227–232

    CAS  Google Scholar 

  • Plumley FG and Schmidt GW (1995) Light-harvesting chlorophyll a/b complexes: Interdependent pigment synthesis and protein assembly. Plant Cell 7: 689–704

    PubMed  CAS  Google Scholar 

  • Polívka T and Sundström V (2004) Ultrafast dynamics of carotenoid excited states — from solution to natural and artificial systems. Chem Rev 104: 2021–2071

    PubMed  Google Scholar 

  • Popot J-L and Engelman DM (1990) Membrane protein folding and oligomerization: The two-stage model. Biochemistry 29: 4031–4037

    PubMed  CAS  Google Scholar 

  • Prince SM, Papiz MZ, Freer AA, McDermott G, Hawthornthwaite-Lawless AM, Cogdell RJ and Isaacs NW (1997) Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: Modular assembly and protein pigment interactions. J Mol Biol 268: 412–23

    PubMed  CAS  Google Scholar 

  • Rau HK, Snigula H, Struck A, Robert B, Scheer H and Haehnel W (2001) Design, synthesis and properties of synthetic chlorophyll proteins. Eur J Biochem 268: 3284–95

    PubMed  CAS  Google Scholar 

  • Recchia PA, Davis CM, Lilburn TG, Beatty JT, Parkes-Loach PS, Hunter CN and Loach PA (1998) Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: Evidence for its interaction with the α-polypeptide of the core light-harvesting complex. Biochemistry 37: 11055–11063

    PubMed  CAS  Google Scholar 

  • Remelli R, Varotto C, Sandona D, Croce R and Bassi R (1999) Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J Biol Chem 274: 33510–33521

    PubMed  CAS  Google Scholar 

  • Ritz T, Damjanovic A, Schulten K, Zhang J-P and Koyama Y (2000) Efficient light harvesting through carotenoids. 66: 125–144

    CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW and Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969–1972

    PubMed  CAS  Google Scholar 

  • Roszak AW, McKendrick K, Gardiner AT, Mitchell IA, Isaacs NW, Cogdell RJ, Hashimoto H and Frank HA (2004) Protein regulation of carotenoid binding; gatekeeper and locking amino acid residues in reaction centers of Rhodobacter sphaeroides. Structure 12: 765–73

    PubMed  CAS  Google Scholar 

  • Sachs JN, Engelman DM (2006) Introduction to the membrane protein reviews: The interplay of structure, dynamics, and environment in membrane protein function. Annu Rev Biochem 75: 707–712

    PubMed  CAS  Google Scholar 

  • Scheer H and Struck A (1993) Bacterial reaction centers with modified tetrapyrrole chromophores. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, pp 157–192. Academic Press, San Diego

    Google Scholar 

  • Scherz A and Parson WW (1984) Exciton interactions in dimers ofbacteriochlorophyll and related molecules. Biochim Biophys Acta 766: 666–678

    CAS  Google Scholar 

  • Shuvalov VA and Duysens LNM. (1986) Primary electron transfer reactions in modifiedreaction centers from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 83: 1690–1694

    PubMed  CAS  Google Scholar 

  • Sperotto MM, May S and Baumgaertner A (2006) Modelling of proteins in membranes. Chem Phys Lipids 141: 2–29

    PubMed  CAS  Google Scholar 

  • Spiedel D, Jones MR and Robert B (2002) Tuning of the redox potential of the primary electron donor in reaction centres of purple bacteria: Effects of amino acid polarity and position. FEBS Lett 527: 171–175

    PubMed  CAS  Google Scholar 

  • Stark W, Kühlbrandt W, Wildhaber I, Wehrli E and Mühlethaler K (1984) The structure of the photoreceptor unit of Rhodopseudomonas viridis. EMBO J 3: 777–783.

    PubMed  CAS  Google Scholar 

  • Struck A and Scheer H (1990) Modified reaction centers from Rhodobacter sphaeroides R26. 1. Exchange of monomeric bacteriochlorophyll with 132-hydroxy-bacteriochlorophyll. FEBS Lett 261: 385–388

    CAS  Google Scholar 

  • Struck A, Beese D, Cmiel E, Fischer M, Müller A, Schäfer W and Scheer H (1990a) Modified bacterial reaction centers: 3. Chemically modified chromophores at sites BA, BB and HA, HB. In: Michel-Beyerle ME (ed) Reaction Centers of Photosynthetic Bacteria, pp 313–327. Springer, Berlin

    Google Scholar 

  • Struck A, Cmiel E, Katheder I and Scheer H (1990b) Modified reaction centers from Rhodobacter sphaeroides R26. 2: Bacteriochlorophyll with modified C-3 substituents at sites BA and BB. FEBS Lett. 268: 180–184

    PubMed  CAS  Google Scholar 

  • Sturgis JN and Robert B (1994) Thermodynamics of membrane polypeptide oligomerization in light-harvesting complexes and associated structural changes. J Mol Biol 238: 445–454

    PubMed  CAS  Google Scholar 

  • Sturgis JN and Robert B (1997) Pigment binding site and electronic properties in light-harvesting proteins of purple bacteria. J Phys Chem 101: 7227–7231

    CAS  Google Scholar 

  • Theiler R, Suter F, Wiemken V and Zuber H (1984) Complete primary structure of the four light-harvestingpolypeptides from Rhodopseudomonas sphaeroides R26.1. Experientia 40: 640

    Google Scholar 

  • Todd JB, Parkes-Loach PS, Leykam JF and Loach PA (1998) In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components. Biochemistry 37: 17458–17468

    PubMed  CAS  Google Scholar 

  • Ueda T, Morimoto Y, Sato M, Kakuno T, Yamashita J and Horio T (1985) Isolation, characterization, and comparison of a ubiquitous pigment-protein complex consiting of a reaction center and light-harvesting bacteriochlorophyll proteins present in purple photosynthetic bacteria. J Biochem 98: 1487–1498

    PubMed  CAS  Google Scholar 

  • van Grondelle R (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim Biophys Acta 811: 147–195

    Google Scholar 

  • Vegh AP and Robert B (2002) Spectroscopic characterisation of a tetrameric subunit form of the core antenna protein from Rhodospirillum rubrum. FEBS Lett 528: 222–226

    PubMed  CAS  Google Scholar 

  • Vershinin A (1999) Biological functions of carotenoids—diversity and evolution. Biofactors 10: 99–104

    PubMed  CAS  Google Scholar 

  • Wallin E, Tsukihara T, Yoshikawa S, von Heijne G and Elofsson A (1997) Architecture of helix bundle membrane proteins: An analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci 6: 808–815

    Article  PubMed  CAS  Google Scholar 

  • Walters RF, DeGrado WF (2006) Helix-packing motifs in membrane proteins. Proc Natl Acad Sci USA 103: 13658–13663

    PubMed  CAS  Google Scholar 

  • Wang Y, Hu X (2002) A quantum chemistry study of binding carotenoids in the bacterial light-harvesting complexes. J Am Chem Soc 124: 8445–8451

    PubMed  CAS  Google Scholar 

  • Wang Z-Y, Gokan K, Kobayashi M and Nozawa T (2005) Solution structures of the core light-harvesting a and β polypeptides from Rhodospirillum rubrum: implications for the pigment-protein and protein-protein interactions. J Mol Biol 347: 465–477

    PubMed  CAS  Google Scholar 

  • Wang Z-Y, Muraoka Y, Shimonaga M, Kobayashi M and Nozawa T (2002) Selective detection and assignment of the solution NMR signals of bacteriochlorophyll a in a reconstituted subunit of a light-harvesting complex. J Am Chem Soc 124: 1072–1078

    PubMed  CAS  Google Scholar 

  • Witt H, Schlodder E, Teutloff C, Niklas J, Bordignon E, Carbonera D, Kohler S, Labahn A and Lubitz W (2002) Hydrogen bonding to P700: Site-directed mutagenesis of threonine A739 of Photosystem I in Chlamydomonas reinhardtii. Biochemistry 41: 8557–8569

    PubMed  CAS  Google Scholar 

  • Young AJ (1993) Occurrence and distribution of carotenoids in photosynthetic systems. In: Young AJ and Britton G (eds) Carotenoids in Photosynthesis, pp 16–71. Chapman & Hall, London

    Google Scholar 

  • Zeng X, Choudhary M and Kaplan S (2003) A second and unusual puc BA operon of Rhodobacter sphaeroides 2.4.1: Genetics and function of the encoded polypeptides. J Bacteriol 185: 6171–6184

    PubMed  CAS  Google Scholar 

  • Zuber H and Cogdell RJ (1995) Structure and organization of purple bacterial antenna complexes. In: Blankenship R, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 315–348. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zurdo J, Centeno MA, Odriozola JA, Fernandez-Cabrera C and Ramirez JM (1995) The structural role of the carotenoid in the bacterial light-harvesting protein 2 (LH2) of Rhodobacter capsulatus. A Fourier transform Raman spectroscopy and circular dichroism study. 46: 363–369

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Braun, P., Fiedor, L. (2009). Design and Assembly of Functional Light-Harvesting Complexes. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_46

Download citation

Publish with us

Policies and ethics