Skip to main content

Abstract

Atomistic simulation studies of fracture are aimed at addressing both practical problems in materials engineering and providing basic understanding in fundamental issues in the science of solid mechanics. A practical goal is the development of computational tools to predict the fracture toughness of materials as a function of composition, microstructure, temperature, environment, and loading conditions. Such tools would be extremely useful in the engineering development of novel high-strength structural materials by identifying likely candidate formulations and reducing the number of laboratory trials needed for their testing and validation. As basic research, computer simulation of fracture in single crystals has provided new insight into the stability of crack propagation, the phenomenon of lattice trapping, and the origins of brittle and ductile behavior. Simulation studies of polycrystalline and particularly nanocrystalline solids are increasingly important research tools for investigating fracture and deformation mechanisms in these materials. Large scale simulations that are made possible by the increasing computational power available [1,2] can shed new light on phenomena that can now be compared with experimental observations. For recent reviews, see Refs. [3,4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.F. Abraham, “Very large scale simulations of materials failure,” Phil. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 360, 367–382, 2002.

    Article  MATH  ADS  Google Scholar 

  2. S.J. Zhou, P.S. Lomdahl, A.F. Voter, and B.L. Holian, “Three-dimensional fracture via large-scale molecular dynamics,” Eng. Fract. Mech., 61, 173–187, 1998.

    Article  Google Scholar 

  3. M. Marder, “Molecular dynamics of cracks,” Comput. Sci. Eng., 1, 48–55, 1999.

    Article  Google Scholar 

  4. R.L.B. Selinger and D. Farkas (eds.), “Atomistic theory and simulation of fracture,” MRS Bulletin, 25, No. 5, 2000.

    Google Scholar 

  5. M.S. Daw and M.I. Baskes, “Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals,” Phys. Rev. Lett., 50, 1285–1288, 1983.

    Article  ADS  Google Scholar 

  6. K.W. Jacobsen, J.K. Norskov, and M.J. Puska, “Interatomic interactions in the effective-medium theory,” Phys. Rev. B, 35, 7423–7442, 1986.

    Article  ADS  Google Scholar 

  7. J.A. Hauch, D. Holland, M.P. Marder, and H.L. Swinney, “Dynamic fracture in single crystal silicon,” Phys. Rev. Lett., 82, 3823–3826, 1999.

    Article  ADS  Google Scholar 

  8. F.F. Abraham, N. Bernstein, J.Q. Broughton, and D. Hess, “Dynamic fracture of silicon: concurrent simulation of quantum electrons, classical atoms, and the continuum solid,” MRS Bull., 25(5), 27–32, 2000.

    Google Scholar 

  9. Lawn, Brian, Fracture of Brittle Solids, Cambridge University Press, Cambridge, U.K., 1993.

    Book  Google Scholar 

  10. J.P. Hirth and J. Lothe, Theory of Dislocations, JohnWiley & Sons, New York, 1992.

    Google Scholar 

  11. D. Farkas, H. Van Swygenhoven, and P.M. Derlet, “Intergranular fracture in nanocrystalline metals,” Phys. Rev. B, 66, 060101–4(R), 2002.

    Article  ADS  Google Scholar 

  12. P. Keblinski, D. Wolf, and S.R. Phillpot, “Molecular dynamics simulation of grain boundary diffusion creep,” Interface Sci., 6, 205–212, 1998.

    Article  Google Scholar 

  13. M. Falk, “Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids,” Phys. Rev. B, 60, 7062–7070, 1999.

    Article  ADS  Google Scholar 

  14. D. Holland and M. Marder, “Ideal brittle fracture of silicon studied with molecular dynamics,” Phys. Rev. Lett., 80, 746–749, 1997.

    Article  ADS  Google Scholar 

  15. R.L.B. Selinger and J.M. Corbett, “Dynamic fracture in disordered media,” MRS Bull., 25(5), 46–50, 2000.

    Google Scholar 

  16. S.J. Zhou, P.S. Lomdahl, R. Thomson, and B.L. Holian, “Dynamic crack processes via molecular dynamics,” Phys. Rev. Lett., 76, 2318–2321, 1996.

    Article  ADS  Google Scholar 

  17. D. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edn. Cambridge University Press, Cambridge, U.K., 2004.

    MATH  Google Scholar 

  18. G.C. Sih and H. Liebowitz, Fracture: An Advanced Treatise, In: H. Liebowitz (ed.), vol.11, Academic Press, New York, 69, 189, 1968.

    Google Scholar 

  19. K.S. Cheung and S. Yip, “Brittle-ductile transition in intrinsic frcture behavior of crystals,” Phys. Rev. Lett., 65, 2804–2807, 1990.

    Article  ADS  Google Scholar 

  20. B. DeCelis, A.S. Argon, and S. Yip, “Molecular dynamics simulation of crack tip processes in alpha-iron and copper,” J. Appl. Phys., 54, 4864–4878, 1983.

    Article  ADS  Google Scholar 

  21. S. Kohlhoff, P. Gumbsch, and H.F. Fischmeister, “Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model,” Philos. Mag. A, 64, 851–878, 1991.

    Article  ADS  Google Scholar 

  22. C. Shastry and D. Farkas, “Molecular statics simulation of fracture in α-iron,” Modeling Simulation Mater. Sci. Eng., 4, 473–492, 1996.

    Article  ADS  Google Scholar 

  23. A. Latapie and D. Farkas, “Molecular dynamics investigation of the fracture behavior of nanocrystalline α-Fe,” Phys. Rev. B, 69, 134110, 2004.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Farkas, D., Selinger, R.L.B. (2005). Atomistics of Fracture. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_44

Download citation

Publish with us

Policies and ethics