Skip to main content

Understanding Central Pattern Generators: Insights Gained from the Study of Invertebrate Systems

  • Chapter
Neurobiology of Vertebrate Locomotion

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

Abstract

Any discussion of the neurobiology of vertebrate locomotion would be remiss without some mention of the contribution made by the study of invertebrates. After all the problems of locomotion (pattern generation, spatial and temporal coordination, and sensory modulation) are common to both groups. Perhaps similar neural mechanisms have evolved to cope with these common conditions. Certainly there is ample evidence in both groups that the generation of rhythmic neural activity underlying cyclic locomotor patterns can be attributed to “central pattern generator” (CPG) networks (Delcomyn, 1980). If we are to understand how locomotor patterns are generated and controlled a necessary step will be to understand how CPG networks produce spatially and temporally coordinated activity. In particular what are the cellular and synaptic mechanisms involved in motor pattern generation?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dekin, M.S. and Getting, P.A. (1984). Firing pattern of neurons in the nucleus tractus solitarious: Modulation by membrane hyperpolarization. Brain Res., 324, 180–184.

    Article  CAS  PubMed  Google Scholar 

  2. Dekin, M.S., Richerson, G.B. and Getting, P.A. (1985). Thyrotropin releasing hormone induces rhythmic bursting in neurons of the nucleus tractus solitarius. Science (in press).

    Google Scholar 

  3. Eisen, J.S. and Marder, E. (1984). A mechanism for the production of phase shifts in a pattern generator. J. Neurophysiol., 51 1375–1393.

    CAS  PubMed  Google Scholar 

  4. Friesen, W.O. and Stent, G.S. (1977). Generation of a locomotory rhythm by a neural network of recurrent cyclic inhibition. Biol. Cyber., 28, 27–40.

    Article  CAS  Google Scholar 

  5. Getting, P.A. (1981). Mechanisms of pattern generation underlying swimming in Tritonia. I. Neuronal network formed by monosynaptic connections. J. Neurophysiol., 46, 65–79

    CAS  PubMed  Google Scholar 

  6. Getting, P.A. (1983a). Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. J. Neurophysiol., 49, 1017–1035.

    CAS  PubMed  Google Scholar 

  7. Getting, P.A. (1983b). Mechanisms of pattern generation underlying swimming in Tritonia. III. Intrinsic and synaptic mechanisms for delayed excitation. J. Neurophysiol., 49, 1036–1050.

    CAS  PubMed  Google Scholar 

  8. Getting, P.A. (1983c). Neural control of swimming in Tritonia. In Neural Origin of Rhythmic Movements, (eds. A. Roberts and B.L. Roberts). Soc. Exp. Biol. Symp., 37, Cambridge University Press, Cambridge.

    Google Scholar 

  9. Getting, P.A. (1985). Comparative analysis of invertebrate central pattern generators. In Neural Control of Rhythmic Movements. (eds. A.H. Cohen, S. Rossignol, and S. Grillner). Wiley, NY (in press).

    Google Scholar 

  10. Getting, P.A. and Dekin, M.S. (1985a). Mechanisms of pattern generation underlying swimming in Tritonia. IV. Gating of a central pattern generator. J. Neurophysiol., 52, 466–480.

    Google Scholar 

  11. Getting, P.A. and Dekin, M.S. (1985b). Tritonia swimming: A model system for integration within rhythmic motor systems. In Model Networks and Behavior, (ed. A.I. Selverston). Plenum Press, NY.

    Google Scholar 

  12. Getting, P.A., Lennard, P.R. and Hume, R.I. (1980). Central pattern generator mediating swimming in Tritonia. I. Identification and synaptic interactions. J. Neurophysiol., 44, 151–164.

    CAS  PubMed  Google Scholar 

  13. Grillner, S., Wallen, P., McClellan, A., Sigvardt, K., Williams, T. and Feldman, J. (1983). The neural generation of locomotion in the lamprey: An incomplete account. In Neural Origin of Rhythmic Movements, (eds. A. Roberts and B.L. Roberts). Soc. Exp. Biol. Symp., 37, Cambridge University Press, Cambridge.

    Google Scholar 

  14. Grillner, S. and Wallen, P. (1985). Central pattern generators for locomotion, with special reference to vertebrates. Ann. Rev. Neurosci., 8, 233–261.

    Article  CAS  PubMed  Google Scholar 

  15. Harris-Warrick, R.M. (1985). Chemical modulation of central pattern generators. In Neural Control of Rhythmic Movements. (eds. A.H. Cohen, S. Rossignol, and S. Grillner). Wiley, NY (in press).

    Google Scholar 

  16. Hume, R.I., Getting, P.A. and Del Beccaro, M.A. (1982). Motor organization of Tritonia swimming. I. Quantitative analysis of swim behavior and flexion neuron firing patterns. J. Neurophysiol., 47, 60–74.

    CAS  PubMed  Google Scholar 

  17. Hume, R.I. and Getting, P.A. (1982). Motor organization of Tritonia swimming. III. Contribution of intrinsic membrane properties to flexion neuron burst formation. J. Neurophysiol., 47, 91–102.

    CAS  PubMed  Google Scholar 

  18. Kerkut, G. and Wheal, H. eds. (1981). Electrophysiology of Isolated Mammalian CNS Preparations. Academic Press, London.

    Google Scholar 

  19. Kristan, W.B. Jr. (1980). Generation of rhythmic motor patterns. In Information Processing in the Nervous System. (eds. H.M. Pinsker and W.D. Willis, Jr.). Raven Press, N.Y.

    Google Scholar 

  20. Landmesser, L.T. and O’Donovan, M.J. (1984). Activation patterns of embryonic chick hind limb muscles recorded in ovo and in an isolated spinal cord preparation. J. Physiol., 347, 189–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lennard, P.R., Getting, P.A. and Hume, R.I. (1980). Central pattern generator mediating swimming in Tritonia. II. Initiation, maintenance, and termination. J. Neurophysiol., 44, 165–173.

    CAS  PubMed  Google Scholar 

  22. Llinas, R., Yarom, Y. and Sugimori, M. (1981). The isolated mammalian brain in vitro: A new technique for the analysis of the electrical activity of neuronal circuit function. Fed. Proc, 40, 2240–2245.

    CAS  PubMed  Google Scholar 

  23. Miller, J.P. and Selverston, A.I. (1979). Rapid killing of single neurons by irradiation of intracellularly injected dyes. Science, 206, 702–704.

    Article  CAS  PubMed  Google Scholar 

  24. Miller, J.P. and Selverston, A.I. (1982). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons. J. Neurophysiol., 48, 1378–1391.

    CAS  PubMed  Google Scholar 

  25. Nagy, F. and Dickinson, P.S. (1983). Control of a central pattern generator by an identified modulatory interneuron in Crustacea. I. Modulation of the pyloric motor output. J. Exp. Biol., 105, 33–58.

    CAS  PubMed  Google Scholar 

  26. Richerson, G.B. and Getting, P.A. (1984). Respiratory activity in a perfused guinea pig brain/spinal cord preparation. Neurosci. Abstr., 10, 745.

    Google Scholar 

  27. Roberts, A. and Roberts, B.L., eds. (1983), Neural Origin of Rhythmic Movements. Soc. Exp. Biol. Symp., 37, Cambridge University Press, Cambridge.

    Google Scholar 

  28. Roberts, A., Soffe, S.R., Clarke, J.D.W. and Dale, W. (1983). Initiation and control of swimming in amphibian embryos. In Neural Origin of Rhythmic Movements, (eds. A. Roberts and B.L. Roberts). Soc. Exp. Biol. Symp., 37, Cambridge University Press, Cambridge.

    Google Scholar 

  29. Rovainen, C.M. (1983). Identified neurons in the lamprey spinal cord and their roles in fictive swimming. In Neural Origin of Rhythmic Movements, (eds. A. Roberts and B.L. Roberts). Soc. Exp. Biol. Symp., 37, Cambridge University Press, Cambridge.

    Google Scholar 

  30. Russell, D.F. and Hartline, D.K. (1978). Bursting neural networks: A re-examination. Science, 200, 453–456.

    Article  CAS  PubMed  Google Scholar 

  31. Selverston, A. I., ed. (1985). Model Networks and Behavior. Plenum Press, NY (in press).

    Google Scholar 

  32. Selverston, A.I., Miller, J.P. and Wadepuhl, M. (1983). Cooperative mechanisms for the production of rhythmic movements. In Neural Origin of Rhythmic Movements, (eds. A. Roberts and B.L. Roberts). Soc. Exp. Biol. Symp., 37, Cambridge University Press, Cambridge.

    Google Scholar 

  33. Selverston, A.I., and Moulin, M. (1985). Oscillatory neural networks. Ann. Rev. Physiol., 47, 29–48.

    Article  CAS  Google Scholar 

  34. Sigvardt, K.A. and Grillner, S. (1981). Spinal neuronal activity during fictive locomotion in the lamprey. Neurosci. Abstr., 7, 362.

    Google Scholar 

  35. Speck, D.F. and Feldman, J.L. (1982). The effects of microstimulation and microlessions in the ventral and dorsal respiratory groups in medulla of cat. J. Neurosci., 2, 744–757.

    CAS  PubMed  Google Scholar 

  36. Stein, P.S.G. (1983). The vertebrate scratch reflex. In Neural Origin of Rhythmic Movements, (eds. A. Roberts and B.L. Roberts). Soc. Exp. Biol. Symp., 37, Cambridge University Press, Cambridge.

    Google Scholar 

  37. Willows, A.O.D. (1967). Behavioral acts elicted by stimulation of single, identifiable brain cells. Science, 157, 570–574.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Wenner-Gren Center

About this chapter

Cite this chapter

Getting, P.A. (1986). Understanding Central Pattern Generators: Insights Gained from the Study of Invertebrate Systems. In: Grillner, S., Stein, P.S.G., Stuart, D.G., Forssberg, H., Herman, R.M. (eds) Neurobiology of Vertebrate Locomotion. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-09148-5_16

Download citation

Publish with us

Policies and ethics