Skip to main content

Recombination of Compatible Substitutions by 2GenReP and InSiReP

  • Protocol
  • First Online:
Enzyme Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2397))

Abstract

The CompassR rule enables to identify the beneficial substitutions, which can be recombined in directed evolution with gradually improving the enzymatic properties. However, the question of how to efficiently explore the protein sequence space when ten or more beneficial substitutions are identified has not yet been addressed. Two recombination strategies 2GenReP and InSiReP employing CompassR are systematically investigated to minimize experimental efforts and maximize possible improvements. Here we describe the details of the 2GenReP and InSiReP procedure with an example of recombining 15 substitutions and discuss some important practical issues that should be considered for the application of 2GenReP and InSiReP, such as placing the substitutions into subsets. The core part of the protocol (Step1 to Step5) is transferable to other enzymes and any recombination of potential substitutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold FH (1998) When blind is better: protein design by evolution. Nat Biotechnol 16(7):617–618. https://doi.org/10.1038/nbt0798-617

    Article  CAS  PubMed  Google Scholar 

  2. Arnold FH (2018) Directed evolution: bringing new chemistry to life. Angew Chem Int Ed 57(16):4143–4148. https://doi.org/10.1002/anie.201708408

    Article  CAS  Google Scholar 

  3. Bornscheuer UT, Hauer B, Jaeger KE, Schwaneberg U (2019) Directed evolution empowered redesign of natural proteins for the sustainable production of chemicals and pharmaceuticals. Angew Chem Int Ed 58(1):36–40. https://doi.org/10.1002/anie.201812717

    Article  CAS  Google Scholar 

  4. Tee KL, Roccatano D, Stolte S, Arning J, Jastorff B, Schwaneberg U (2008) Ionic liquid effects on the activity of monooxygenase P450 BM-3. Green Chem 10(1):117–123. https://doi.org/10.1039/B714674D

    Article  CAS  Google Scholar 

  5. Cui H, Cao H, Cai H, Jaeger KE, Davari MD, Schwaneberg U (2019) Computer-assisted recombination (CompassR) teaches us how to recombine beneficial substitutions from directed evolution campaigns. Chem Eur J 26(3):643–649. https://doi.org/10.1002/chem.201903994

    Article  CAS  PubMed  Google Scholar 

  6. Cui H, Davari MD, Schwaneberg U (2021) CompassR yields highly organic solvent-tolerant enzymes through recombination of compatible substitutions. Chem Eur J 27(8):2789-2797. https://doi.org/10.1002/chem.202004471

  7. Cui H, Zhang L, Eltoukhy L, Jiang Q, Korkunç SK, Jaeger K-E, Schwaneberg U, Davari MD (2020) Enzyme hydration determines resistance in organic cosolvents. ACS Catal 10(24):14847–14856. https://doi.org/10.1021/acscatal.0c03233

    Article  CAS  Google Scholar 

  8. Thiele MJ, Davari MD, König M, Hofmann I, Junker NO, Mirzaei Garakani T, Vojcic L, Fitter J, Schwaneberg U (2018) Enzyme-polyelectrolyte complexes boost the catalytic performance of enzymes. ACS Catal 8(11):10876–10887. https://doi.org/10.1021/acscatal.8b02935

    Article  CAS  Google Scholar 

  9. Reetz MT, Soni P, Fernández L (2009) Knowledge-guided laboratory evolution of protein thermolability. Biotechnol Bioeng 102(6):1712–1717. https://doi.org/10.1002/bit.22202

    Article  CAS  PubMed  Google Scholar 

  10. Zou Z, Mate DM, Rübsam K, Schwaneberg U (2018) Sortase-mediated high-throughput screening platform for directed enzyme evolution. ACS Comb Sci 20(4):203–211. https://doi.org/10.1021/acscombsci.7b00153

    Article  CAS  PubMed  Google Scholar 

  11. Reetz MT, Brunner B, Schneider T, Schulz F, Clouthier CM, Kayser MM (2004) Directed evolution as a method to create enantioselective cyclohexanone monooxygenases for catalysis in Baeyer–Villiger reactions. Angew Chem Int Ed 43(31):4075–4078. https://doi.org/10.1002/anie.200460272

    Article  CAS  Google Scholar 

  12. Josiane F-MV, Fulton A, Zhao J, Weber L, Jaeger KE, Schwaneberg U, Zhu L (2018) Exploring the full natural diversity of single amino acid exchange reveals that 40–60% of BSLA positions improve organic solvents resistance. Bioresour Bioprocess 5(1):2

    Article  Google Scholar 

  13. Markel U, Zhu L, Frauenkron-Machedjou VJ, Zhao J, Bocola M, Davari MD, Jaeger KE, Schwaneberg U (2017) Are directed evolution approaches efficient in exploring nature’s potential to stabilize a lipase in organic cosolvents? Catalysts 7(5):142. https://doi.org/10.3390/catal7050142

    Article  CAS  Google Scholar 

  14. Blanusa M, Schenk A, Sadeghi H, Marienhagen J, Schwaneberg U (2010) Phosphorothioate-based ligase-independent gene cloning (PLICing): an enzyme-free and sequence-independent cloning method. Anal Biochem 406(2):141–146. https://doi.org/10.1016/j.ab.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  15. Dennig A, Shivange AV, Marienhagen J, Schwaneberg U (2011) OmniChange: the sequence independent method for simultaneous site-saturation of five codons. PLoS One 6(10):e26222. https://doi.org/10.1371/journal.pone.0026222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frauenkron-Machedjou VJ, Fulton A, Zhu L, Anker C, Bocola M, Jaeger KE, Schwaneberg U (2015) Towards understanding directed evolution: more than half of all amino acid positions contribute to ionic liquid resistance of bacillus subtilis lipase a. Chembiochem 16(6):937–945. https://doi.org/10.1002/cbic.201402682

    Article  CAS  PubMed  Google Scholar 

  17. Hogrefe HH, Cline J, Youngblood GL, Allen RM (2002) Creating randomized amino acid libraries with the QuikChange® multi site-directed mutagenesis kit. BioTechniques 33(5):1158–1165. https://doi.org/10.2144/02335pf01

    Article  CAS  PubMed  Google Scholar 

  18. Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16(3):258. https://doi.org/10.1038/nbt0398-258

    Article  CAS  PubMed  Google Scholar 

  19. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(suppl_2):W382–W388. https://doi.org/10.1093/nar/gki387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Land H, Humble MS (2018) YASARA: a tool to obtain structural guidance in biocatalytic investigations. In: Protein Engineering. Springer, New York, pp 43–67. https://doi.org/10.1007/978-1-4939-7366-8_4

    Chapter  Google Scholar 

  21. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9(1):40

    Article  Google Scholar 

  22. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. In: Methods enzymol, vol 383. Elsevier, Amsterdam, pp 66–93. https://doi.org/10.1016/S0076-6879(04)83004-0

    Chapter  Google Scholar 

  24. Cui H, Davari MD, Schwaneberg U Recombination of single beneficial substitutions obtained from protein engineering by Computer-assisted Recombination (CompassR). In: Methods in molecular biology. Springer Science, Berlin. In press

    Google Scholar 

  25. Van Durme J, Delgado J, Stricher F, Serrano L, Schymkowitz J, Rousseau F (2011) A graphical interface for the FoldX forcefield. Bioinformatics 27(12):1711–1712. https://doi.org/10.1093/bioinformatics/btr254

    Article  CAS  PubMed  Google Scholar 

  26. Christensen NJ, Kepp KP (2013) Stability mechanisms of laccase isoforms using a modified FoldX protocol applicable to widely different proteins. J Chem Theory Comput 9(7):3210–3223. https://doi.org/10.1021/ct4002152

    Article  CAS  PubMed  Google Scholar 

  27. van Pouderoyen G, Eggert T, Jaeger K-E, Dijkstra BW (2001) The crystal structure of bacillus subtili lipase: a minimal α/β hydrolase fold enzyme. J Mol Biol 309(1):215–226. https://doi.org/10.1006/jmbi.2001.4659

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi D. Davari or Ulrich Schwaneberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cui, H., Davari, M.D., Schwaneberg, U. (2022). Recombination of Compatible Substitutions by 2GenReP and InSiReP. In: Magnani, F., Marabelli, C., Paradisi, F. (eds) Enzyme Engineering. Methods in Molecular Biology, vol 2397. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1826-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1826-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1825-7

  • Online ISBN: 978-1-0716-1826-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics