Skip to main content

Cellular Trafficking of Monoclonal and Bispecific Antibodies

  • Protocol
  • First Online:
Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1061 Accesses

Abstract

Monoclonal antibodies, including bispecific antibodies, represent versatile platforms for protein drug development. They have been successfully utilized for broad applications including agonizing or antagonizing cell surface receptors, bridging immune effector cells with cancer cells, and facilitating cell specific uptake of antibody–drug or antibody–oligonucleotide conjugates. Understanding the fate of antibodies and bispecific antibodies after binding their cell surface target(s) is of critical importance to drug development and pharmacology. Numerous publications have reported methods to assess antibody cell binding, internalization, intracellular trafficking, and the fate of the molecules. These methods can provide qualitative assessments for screening drug candidates, or quantitative assessments which can be used to inform mathematical models of cellular kinetics and drug disposition. Here, we focus on assays which offer quantitative assessments of the kinetics of antibody internalization, intracellular trafficking, and degradation or recycling. Experimental design, practical considerations for conducting experiments, and interpretation of results are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gu J, Yang J, Chang Q, Liu Z, Ghayur T, Gu J (2015) Identification of anti-EGFR and anti-ErbB3 dual variable domains immunoglobulin (DVD-Ig) proteins with unique activities. PLoS One 10(5):e0124135. https://doi.org/10.1371/journal.pone.0124135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hackel BJ, Neil JR, White FM, Wittrup KD (2012) Epidermal growth factor receptor downregulation by small heterodimeric binding proteins. Protein Eng Des Sel 25(2):47–57. https://doi.org/10.1093/protein/gzr056

    Article  CAS  PubMed  Google Scholar 

  3. Jones SM, Foreman SK, Shank BB, Kurten RC (2002) EGF receptor downregulation depends on a trafficking motif in the distal tyrosine kinase domain. Am J Physiol Cell Physiol 282(3):C420–C433. https://doi.org/10.1152/ajpcell.00253.2001

    Article  CAS  PubMed  Google Scholar 

  4. Wang S, Huang J, Lyu H, Cai B, Yang X, Li F, Tan J, Edgerton SM, Thor AD, Lee CK, Liu B (2013) Therapeutic targeting of erbB3 with MM-121/SAR256212 enhances antitumor activity of paclitaxel against erbB2-overexpressing breast cancer. Breast Cancer Res 15(5):R101. https://doi.org/10.1186/bcr3563

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Goeij BE, Peipp M, de Haij S, van den Brink EN, Kellner C, Riedl T, de Jong R, Vink T, Strumane K, Bleeker WK, Parren PW (2014) HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rational antibody-drug conjugate design. MAbs 6(2):392–402. https://doi.org/10.4161/mabs.27705

    Article  PubMed  PubMed Central  Google Scholar 

  6. Henriksen L, Grandal MV, Knudsen SL, van Deurs B, Grovdal LM (2013) Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands. PLoS One 8(3):e58148. https://doi.org/10.1371/journal.pone.0058148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pedersen MW, Jacobsen HJ, Koefoed K, Hey A, Pyke C, Haurum JS, Kragh M (2010) Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 70(2):588–597. https://doi.org/10.1158/0008-5472.CAN-09-1417

    Article  CAS  PubMed  Google Scholar 

  8. Roepstorff K, Grandal MV, Henriksen L, Knudsen SL, Lerdrup M, Grovdal L, Willumsen BM, van Deurs B (2009) Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic 10(8):1115–1127. https://doi.org/10.1111/j.1600-0854.2009.00943.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Glatt DM, Beckford Vera DR, Parrott MC, Luft JC, Benhabbour SR, Mumper RJ (2016) The interplay of antigen affinity, internalization, and pharmacokinetics on CD44-positive tumor targeting of monoclonal antibodies. Mol Pharm 13(6):1894–1903. https://doi.org/10.1021/acs.molpharmaceut.6b00063

    Article  CAS  PubMed  Google Scholar 

  10. Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJ, Weiner LM, Marks JD, Adams GP (2011) Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res 71(6):2250–2259. https://doi.org/10.1158/0008-5472.CAN-10-2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thurber GM, Zajic SC, Wittrup KD (2007) Theoretic criteria for antibody penetration into solid tumors and micrometastases. J Nucl Med 48(6):995–999. https://doi.org/10.2967/jnumed.106.037069

    Article  CAS  PubMed  Google Scholar 

  12. van der Velden VH, Boeckx N, Jedema I, te Marvelde JG, Hoogeveen PG, Boogaerts M, van Dongen JJ (2004) High CD33-antigen loads in peripheral blood limit the efficacy of gemtuzumab ozogamicin (Mylotarg) treatment in acute myeloid leukemia patients. Leukemia 18(5):983–988. https://doi.org/10.1038/sj.leu.2403350

    Article  CAS  PubMed  Google Scholar 

  13. Williams EL, Tutt AL, Beers SA, French RR, Chan CH, Cox KL, Roghanian A, Penfold CA, Butts CL, Boross P, Verbeek JS, Cragg MS, Glennie MJ (2013) Immunotherapy targeting inhibitory Fcgamma receptor IIB (CD32b) in the mouse is limited by monoclonal antibody consumption and receptor internalization. J Immunol 191(8):4130–4140. https://doi.org/10.4049/jimmunol.1301430

    Article  CAS  PubMed  Google Scholar 

  14. Alley SC, Zhang X, Okeley NM, Anderson M, Law CL, Senter PD, Benjamin DR (2009) The pharmacologic basis for antibody-auristatin conjugate activity. J Pharmacol Exp Ther 330(3):932–938. https://doi.org/10.1124/jpet.109.155549

    Article  CAS  PubMed  Google Scholar 

  15. Cilliers C, Guo H, Liao J, Christodolu N, Thurber GM (2016) Multiscale modeling of antibody-drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J 18(5):1117–1130. https://doi.org/10.1208/s12248-016-9940-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rock BM, Tometsko ME, Patel SK, Hamblett KJ, Fanslow WC, Rock DA (2015) Intracellular catabolism of an antibody drug conjugate with a noncleavable linker. Drug Metab Dispos 43(9):1341–1344. https://doi.org/10.1124/dmd.115.064253

    Article  CAS  PubMed  Google Scholar 

  17. Kang JC, Sun W, Khare P, Karimi M, Wang X, Shen Y, Ober RJ, Ward ES (2019) Engineering a HER2-specific antibody-drug conjugate to increase lysosomal delivery and therapeutic efficacy. Nat Biotechnol 37:523–526. https://doi.org/10.1038/s41587-019-0073-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andreev J, Thambi N, Perez Bay AE, Delfino F, Martin J, Kelly MP, Kirshner JR, Rafique A, Kunz A, Nittoli T, MacDonald D, Daly C, Olson W, Thurston G (2017) Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther 16(4):681–693. https://doi.org/10.1158/1535-7163.MCT-16-0658

    Article  CAS  PubMed  Google Scholar 

  19. Ackerman ME, Pawlowski D, Wittrup KD (2008) Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther 7(7):2233–2240. https://doi.org/10.1158/1535-7163.MCT-08-0067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mayle KM, Le AM, Kamei DT (2012) The intracellular trafficking pathway of transferrin. Biochim Biophys Acta 1820(3):264–281. https://doi.org/10.1016/j.bbagen.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  21. Cilliers C, Nessler I, Christodolu N, Thurber GM (2017) Tracking antibody distribution with near-infrared fluorescent dyes: impact of dye structure and degree of labeling on plasma clearance. Mol Pharm 14(5):1623–1633. https://doi.org/10.1021/acs.molpharmaceut.6b01091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532

    Article  CAS  Google Scholar 

  23. Singh AP, Krzyzanski W, Martin SW, Weber G, Betts A, Ahmad A, Abraham A, Zutshi A, Lin J, Singh P (2015) Quantitative prediction of human pharmacokinetics for mAbs exhibiting target-mediated disposition. AAPS J 17(2):389–399. https://doi.org/10.1208/s12248-014-9690-8

    Article  CAS  PubMed  Google Scholar 

  24. Ait-Oudhia S, Ovacik MA, Mager DE (2017) Systems pharmacology and enhanced pharmacodynamic models for understanding antibody-based drug action and toxicity. MAbs 9(1):15–28. https://doi.org/10.1080/19420862.2016.1238995

    Article  CAS  PubMed  Google Scholar 

  25. Spilker ME, Singh P, Vicini P (2016) Mathematical modeling of receptor occupancy data: a valuable technology for biotherapeutic drug development. Cytometry B Clin Cytom 90(2):230–236. https://doi.org/10.1002/cyto.b.21318

    Article  PubMed  Google Scholar 

  26. Kang JC, Poovassery JS, Bansal P, You S, Manjarres IM, Ober RJ, Ward ES (2014) Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells. MAbs 6(2):340–353. https://doi.org/10.4161/mabs.27658

    Article  PubMed  Google Scholar 

  27. Vainshtein I, Roskos LK, Cheng J, Sleeman MA, Wang B, Liang M (2015) Quantitative measurement of the target-mediated internalization kinetics of biopharmaceuticals. Pharm Res 32(1):286–299. https://doi.org/10.1007/s11095-014-1462-8

    Article  CAS  PubMed  Google Scholar 

  28. Stumpf WE (2005) Drug localization and targeting with receptor microscopic autoradiography. J Pharmacol Toxicol Methods 51(1):25–40. https://doi.org/10.1016/j.vascn.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  29. Cohen R, Vugts DJ, Visser GW, Stigter-van Walsum M, Bolijn M, Spiga M, Lazzari P, Shankar S, Sani M, Zanda M, van Dongen GA (2014) Development of novel ADCs: conjugation of tubulysin analogues to trastuzumab monitored by dual radiolabeling. Cancer Res 74(20):5700–5710. https://doi.org/10.1158/0008-5472.CAN-14-1141

    Article  CAS  PubMed  Google Scholar 

  30. Hou JT, Ren WX, Li K, Seo J, Sharma A, Yu XQ, Kim JS (2017) Fluorescent bioimaging of pH: from design to applications. Chem Soc Rev 46(8):2076–2090. https://doi.org/10.1039/c6cs00719h

    Article  CAS  PubMed  Google Scholar 

  31. Pike JA, Styles IB, Rappoport JZ, Heath JK (2017) Quantifying receptor trafficking and colocalization with confocal microscopy. Methods 115:42–54. https://doi.org/10.1016/j.ymeth.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  32. Reineke JB, Xie S, Naslavsky N, Caplan S (2015) Qualitative and quantitative analysis of endocytic recycling. Methods Cell Biol 130:139–155. https://doi.org/10.1016/bs.mcb.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  33. Berguig GY, Convertine AJ, Shi J, Palanca-Wessels MC, Duvall CL, Pun SH, Press OW, Stayton PS (2012) Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate. Mol Pharm 9(12):3506–3514. https://doi.org/10.1021/mp300338s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Glassman PM, Balthasar JP (2016) Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies. J Pharmacokinet Pharmacodyn 43(4):427–446. https://doi.org/10.1007/s10928-016-9482-0

    Article  PubMed  Google Scholar 

  35. Poulin P, Theil FP (2002) Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci 91(1):129–156. https://doi.org/10.1002/jps.10005

    Article  CAS  PubMed  Google Scholar 

  36. Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35(5):573–591. https://doi.org/10.1007/s10928-008-9102-8

    Article  CAS  PubMed  Google Scholar 

  37. Ma P (2012) Theoretical considerations of target-mediated drug disposition models: simplifications and approximations. Pharm Res 29(3):866–882. https://doi.org/10.1007/s11095-011-0615-2

    Article  CAS  PubMed  Google Scholar 

  38. Davda JP, Hansen RJ (2010) Properties of a general PK/PD model of antibody-ligand interactions for therapeutic antibodies that bind to soluble endogenous targets. MAbs 2(5):576–588. https://doi.org/10.4161/mabs.2.5.12833

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hu L, Hansen RJ (2013) Issues, challenges, and opportunities in model-based drug development for monoclonal antibodies. J Pharm Sci 102(9):2898–2908. https://doi.org/10.1002/jps.23504

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt MM, Thurber GM, Wittrup KD (2008) Kinetics of anti-carcinoembryonic antigen antibody internalization: effects of affinity, bivalency, and stability. Cancer Immunol Immunother 57(12):1879–1890. https://doi.org/10.1007/s00262-008-0518-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blagojevic Zagorac G, Mahmutefendic H, Macesic S, Karleusa L, Lucin P (2017) Quantitative analysis of endocytic recycling of membrane proteins by monoclonal antibody-based recycling assays. J Cell Physiol 232(3):463–476. https://doi.org/10.1002/jcp.25503

    Article  CAS  PubMed  Google Scholar 

  42. Horne WS, Wiethoff CM, Cui C, Wilcoxen KM, Amorin M, Ghadiri MR, Nemerow GR (2005) Antiviral cyclic D,L-alpha-peptides: targeting a general biochemical pathway in virus infections. Bioorg Med Chem 13(17):5145–5153. https://doi.org/10.1016/j.bmc.2005.05.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Product Datasheet 814. (2019). Accessed Oct 15 2019

    Google Scholar 

  44. Cheluvappa R (2014) Standardized isolation and culture of murine liver sinusoidal endothelial cells. Curr Protoc Cell Biol 65(9):1–8. https://doi.org/10.1002/0471143030.cb0209s65

    Article  Google Scholar 

  45. Yan X, Mager DE, Krzyzanski W (2010) Selection between Michaelis-Menten and target-mediated drug disposition pharmacokinetic models. J Pharmacokinet Pharmacodyn 37(1):25–47. https://doi.org/10.1007/s10928-009-9142-8

    Article  CAS  PubMed  Google Scholar 

  46. Sharma SK, Pourat J, Abdel-Atti D, Carlin SD, Piersigilli A, Bankovich AJ, Gardner EE, Hamdy O, Isse K, Bheddah S, Sandoval J, Cunanan KM, Johansen EB, Allaj V, Sisodiya V, Liu D, Zeglis BM, Rudin CM, Dylla SJ, Poirier JT, Lewis JS (2017) Noninvasive interrogation of DLL3 expression in metastatic small cell lung cancer. Cancer Res 77(14):3931–3941. https://doi.org/10.1158/0008-5472.CAN-17-0299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA, Zhang Y, Luk W, Lu Y, Dennis MS, Weimer RM, Chung I, Watts RJ (2014) Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med 211(2):233–244. https://doi.org/10.1084/jem.20131660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haqqani AS, Thom G, Burrell M, Delaney CE, Brunette E, Baumann E, Sodja C, Jezierski A, Webster C, Stanimirovic DB (2018) Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood-brain barrier in vitro is dependent on its binding affinity. J Neurochem 146(6):735–752. https://doi.org/10.1111/jnc.14482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harper J, Mao S, Strout P, Kamal A (2013) Selecting an optimal antibody for antibody-drug conjugate therapy: internalization and intracellular localization. Methods Mol Biol 1045:41–49. https://doi.org/10.1007/978-1-62703-541-5_3

    Article  PubMed  Google Scholar 

  50. Lee FT, Rigopoulos A, Hall C, Clarke K, Cody SH, Smyth FE, Liu Z, Brechbiel MW, Hanai N, Nice EC, Catimel B, Burgess AW, Welt S, Ritter G, Old LJ, Scott AM (2001) Specific localization, gamma camera imaging, and intracellular trafficking of radiolabelled chimeric anti-G(D3) ganglioside monoclonal antibody KM871 in SK-MEL-28 melanoma xenografts. Cancer Res 61(11):4474–4482

    CAS  PubMed  Google Scholar 

  51. Perera RM, Zoncu R, Johns TG, Pypaert M, Lee FT, Mellman I, Old LJ, Toomre DK, Scott AM (2007) Internalization, intracellular trafficking, and biodistribution of monoclonal antibody 806: a novel anti-epidermal growth factor receptor antibody. Neoplasia 9(12):1099–1110. https://doi.org/10.1593/neo.07721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu S (2015) Internalization, trafficking, intracellular processing and actions of antibody-drug conjugates. Pharm Res 32(11):3577–3583. https://doi.org/10.1007/s11095-015-1729-8

    Article  CAS  PubMed  Google Scholar 

  53. Bitplane (2019) Spots. Accessed October 15 2019

    Google Scholar 

  54. Maier O, Marvin SA, Wodrich H, Campbell EM, Wiethoff CM (2012) Spatiotemporal dynamics of adenovirus membrane rupture and endosomal escape. J Virol 86(19):10821–10828. https://doi.org/10.1128/JVI.01428-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dutta D, Donaldson JG (2012) Search for inhibitors of endocytosis: intended specificity and unintended consequences. Cell Logist 2(4):203–208. https://doi.org/10.4161/cl.23967

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Rhoden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rhoden, J.J., Wiethoff, C.M. (2021). Cellular Trafficking of Monoclonal and Bispecific Antibodies. In: Rosania, G.R., Thurber, G.M. (eds) Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1250-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1250-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1249-1

  • Online ISBN: 978-1-0716-1250-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics