Skip to main content

Scarless Genomic Protein Labeling in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Yeast Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2196))

  • 1640 Accesses

Abstract

Labeling a protein of interest is widely used to examine its quantity, modification, localization, and dynamics in the budding yeast Saccharomyces cerevisiae. Fluorescent proteins and epitope tags are often used as protein fusion tags to study target proteins. One prevailing technique is to fuse these tags to a target gene at the precise chromosomal location via homologous recombination. Here we describe a protein labeling strategy based on the URA3 pop-in/pop-out and counterselection system to fuse a fluorescent protein or epitope tag scarlessly to a target protein at its native locus in S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  CAS  Google Scholar 

  2. Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075

    Google Scholar 

  3. Chattoo BB, Sherman F, Azubalis DA, Fjellstedt TA, Mehnert D, Ogur M (1979) Selection of lys2 mutants of the yeast Saccharomyces cerevisiae by the utilization of alpha-aminoadipate. Genetics 93:51–65

    Google Scholar 

  4. Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of Ura3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    Article  CAS  Google Scholar 

  5. Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    Article  CAS  Google Scholar 

  6. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553

    Article  CAS  Google Scholar 

  7. Solis-Escalante D, Kuijpers NG, Bongaerts N, Bolat I, Bosman L, Pronk JT, Daran JM, Daran-Lapujade P (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13:126–139

    Article  CAS  Google Scholar 

  8. Boeke JD, Lacroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast - 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    Google Scholar 

  9. Boeke JD, Trueheart J, Natsoulis G, Fink GR (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154:164–175

    Article  CAS  Google Scholar 

  10. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  Google Scholar 

  11. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  Google Scholar 

  12. Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    Article  CAS  Google Scholar 

  13. Habuchi S, Tsutsui H, Kochaniak AB, Miyawaki A, van Oijen AM (2008) mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One 3:e3944

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Huiping Guo for technical assistance and Huijun Xue for the development of method. This work was supported by the Natural Science Foundation of China operating grant 31270823 and Natural Sciences and Engineering Research Council of Canada Discovery Grant RGPIN-2019-05604 to WX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, Q., Fu, Y.V., Xiao, W. (2021). Scarless Genomic Protein Labeling in Saccharomyces cerevisiae. In: Xiao, W. (eds) Yeast Protocols. Methods in Molecular Biology, vol 2196. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0868-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0868-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0867-8

  • Online ISBN: 978-1-0716-0868-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics