Skip to main content

Experimental and Preclinical Tools to Explore the Main Neurological Impacts of Brain Irradiation: Current Insights and Perspectives

  • Protocol
  • First Online:
Brain Tumors

Abstract

Radiation therapy is a powerful tool in the treatment of primary and metastatic cancers of the brain. However, brain tissue tolerance is limited, and radiation doses must be tailored to minimize deleterious effects on the nervous system. Due to improved treatments, including radiotherapy techniques, many patients with brain tumors survive longer, but they experience late effects of radiotherapy, especially cognitive decline, for which no efficient treatment is currently available. Improving the prevention and treatment of radiation-induced neurological defects first needs to better characterize radiation injuries in brain cells and tissues. Rodent models have been widely used for this.

Here, observations from patients will be reviewed briefly as an introduction, mainly regarding clinical cognitive defects and anatomical alterations using magnetic resonance imaging (MRI). This limited descriptive clinical knowledge addresses many questions that arise in preclinical models regarding understanding the mechanism of radiation-induced brain dysfunction. From this perspective, we next present methods to characterize radiation-induced neurogenesis alterations in adult mice and then detail how MRI could be used as a powerful tool to explore these alterations.

Laura Mouton and Monica Ribeiro are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Durand T, Bernier M-O, Léger I et al (2015) Cognitive outcome after radiotherapy in brain tumor. Curr Opin Oncol 27:510. https://doi.org/10.1097/CCO.0000000000000227

    Article  CAS  PubMed  Google Scholar 

  2. Soussain C, Ricard D, Fike JR et al (2009) CNS complications of radiotherapy and chemotherapy. Lancet 374:1639–1651

    Article  CAS  Google Scholar 

  3. Mahajan A, Dong L, Prabhu S et al (2007) Application of deformable image registration to hippocampal doses and neurocognitive outcomes. Neuro-Oncology 9:538

    Google Scholar 

  4. Seibert TM, Karunamuni R, Bartsch H et al (2017) Radiation dose–dependent hippocampal atrophy detected with longitudinal volumetric magnetic resonance imaging. Int J Radiat Oncol 97:263–269. https://doi.org/10.1016/j.ijrobp.2016.10.035

    Article  Google Scholar 

  5. Seibert TM, Karunamuni R, Kaifi S et al (2017) Cerebral cortex regions selectively vulnerable to radiation dose-dependent atrophy. Int J Radiat Oncol 97:910–918. https://doi.org/10.1016/j.ijrobp.2017.01.005

    Article  Google Scholar 

  6. Omuro AMP, Ben-Porat LS, Panageas KS et al (2005) Delayed neurotoxicity in primary central nervous system lymphoma. Arch Neurol:62. https://doi.org/10.1001/archneur.62.10.1595

  7. Connor M, Karunamuni R, McDonald C et al (2016) Dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 121:209–216. https://doi.org/10.1016/j.radonc.2016.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  8. Connor M, Karunamuni R, McDonald C et al (2017) Regional susceptibility to dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 123:209–217. https://doi.org/10.1016/j.radonc.2017.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  9. Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550. https://doi.org/10.1016/j.gde.2003.08.012

    Article  CAS  PubMed  Google Scholar 

  10. Capdevila C, Vázquez LR, Martí J (2017) Glioblastoma multiforme and adult neurogenesis in the ventricular-subventricular zone: a review. J Cell Physiol 232:1596–1601. https://doi.org/10.1002/jcp.25502

    Article  CAS  PubMed  Google Scholar 

  11. Gil-Perotin S, Marin-Husstege M, Li J et al (2006) Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 26:1107–1116. https://doi.org/10.1523/JNEUROSCI.3970-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta T, Nair V, Paul SN et al (2012) Can irradiation of potential cancer stem-cell niche in the subventricular zone influence survival in patients with newly diagnosed glioblastoma? J Neuro-Oncol 109:195–203. https://doi.org/10.1007/s11060-012-0887-3

    Article  Google Scholar 

  13. Khalifa J, Tensaouti F, Lusque A et al (2017) Subventricular zones: new key targets for glioblastoma treatment. Radiat Oncol 12. https://doi.org/10.1186/s13014-017-0791-2

  14. Bompaire F, Lahutte M, Buffat S et al (2018) New insights in radiation-induced leukoencephalopathy: a prospective cross-sectional study. Support Care Cancer 26:4217–4226. https://doi.org/10.1007/s00520-018-4296-9

    Article  PubMed  Google Scholar 

  15. Doolittle ND, Korfel A, Lubow MA et al (2013) Long-term cognitive function, neuroimaging, and quality of life in primary CNS lymphoma. Neurology 81:84–92. https://doi.org/10.1212/WNL.0b013e318297eeba

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ricard D, Idbaih A, Ducray F et al (2012) Primary brain tumours in adults. Lancet 379:1984–1996. https://doi.org/10.1016/S0140-6736(11)61346-9

    Article  PubMed  Google Scholar 

  17. Vigliani MC, Duyckaerts C, Hauw JJ et al (1999) Dementia following treatment of brain tumors with radiotherapy administered alone or in combination with nitrosourea-based chemotherapy: a clinical and pathological study. J Neuro-Oncol 41:137–149

    Article  CAS  Google Scholar 

  18. Dropcho EJ (2010) Neurotoxicity of radiation therapy. Neurol Clin 28:217–234. https://doi.org/10.1016/j.ncl.2009.09.008

    Article  PubMed  Google Scholar 

  19. Ricard D, Soussain C, Psimaras D (2011) Neurotoxicity of the CNS: diagnosis, treatment and prevention. Rev Neurol (Paris) 167:737–745

    Article  CAS  Google Scholar 

  20. Tofilon PJ, Fike JR (2000) The radioresponse of the central nervous system: a dynamic process. Radiat Res 153:357–370. https://doi.org/10.1667/0033-7587(2000)153[0357:TROTCN]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  21. Fike JR (2011) Physiopathology of radiation-induced neurotoxicity. Rev Neurol (Paris) 167:746–750. https://doi.org/10.1016/j.neurol.2011.07.005

    Article  CAS  Google Scholar 

  22. Lai R, Abrey LE, Rosenblum MK, DeAngelis LM (2004) Treatment-induced leukoencephalopathy in primary CNS lymphoma: a clinical and autopsy study. Neurology 62:451–456

    Article  Google Scholar 

  23. El Waly B, Macchi M, Cayre M, Durbec P (2014) Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 8:145. https://doi.org/10.3389/fnins.2014.00145

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hebb AO, Cusimano MD (2001) Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery 49:1166–1184.; discussion 1184-1186. https://doi.org/10.1097/00006123-200111000-00028

    Article  CAS  PubMed  Google Scholar 

  25. Yoneoka Y, Satoh M, Akiyama K et al (1999) An experimental study of radiation-induced cognitive dysfunction in an adult rat model. Br J Radiol 72:1196–1201. https://doi.org/10.1259/bjr.72.864.10703477

    Article  CAS  PubMed  Google Scholar 

  26. Monje ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8:955. https://doi.org/10.1038/nm749

    Article  CAS  PubMed  Google Scholar 

  27. Monje ML, Vogel H, Masek M et al (2007) Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann Neurol 62:515–520. https://doi.org/10.1002/ana.21214

    Article  PubMed  Google Scholar 

  28. Obernier K, Alvarez-Buylla A (2019) Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 146:dev156059. https://doi.org/10.1242/dev.156059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Doetsch F, Caillé I, Lim DA et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716. https://doi.org/10.1016/S0092-8674(00)80783-7

    Article  CAS  PubMed  Google Scholar 

  30. Kempermann G, Gage FH, Aigner L et al (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23:25–30. https://doi.org/10.1016/j.stem.2018.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanai N, Nguyen T, Ihrie RA et al (2011) Corridors of migrating neurons in human brain and their decline during infancy. Nature 478:382–386. https://doi.org/10.1038/nature10487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sanai N, Tramontin AD, Quiñones-Hinojosa A et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740. https://doi.org/10.1038/nature02301

    Article  CAS  PubMed  Google Scholar 

  33. Fuentealba LC, Rompani SB, Parraguez JI et al (2015) Embryonic origin of postnatal neural stem cells. Cell 161:1644–1655. https://doi.org/10.1016/j.cell.2015.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Furutachi S, Miya H, Watanabe T et al (2015) Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 18:657–665. https://doi.org/10.1038/nn.3989

    Article  CAS  PubMed  Google Scholar 

  35. Kippin TE, Martens DJ, van der Kooy D (2005) p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 19:756–767. https://doi.org/10.1101/gad.1272305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Molofsky AV, Pardal R, Iwashita T et al (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967. https://doi.org/10.1038/nature02060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ottone C, Krusche B, Whitby A et al (2014) Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol 16:1045–1056. https://doi.org/10.1038/ncb3045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mira H, Andreu Z, Suh H et al (2010) Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 7:78–89. https://doi.org/10.1016/j.stem.2010.04.016

    Article  CAS  PubMed  Google Scholar 

  39. Zawadzka M, Rivers LE, Fancy SPJ et al (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578–590. https://doi.org/10.1016/j.stem.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  40. Picard-Riera N, Decker L, Delarasse C et al (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci U S A 99:13211–13216. https://doi.org/10.1073/pnas.192314199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tepavčević V, Lazarini F, Alfaro-Cervello C et al (2011) Inflammation-induced subventricular zone dysfunction leads to olfactory deficits in a targeted mouse model of multiple sclerosis. J Clin Invest 121:4722–4734. https://doi.org/10.1172/JCI59145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parras CM, Galli R, Britz O et al (2004) Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J 23:4495–4505. https://doi.org/10.1038/sj.emboj.7600447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Codega P, Silva-Vargas V, Paul A et al (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82:545–559. https://doi.org/10.1016/j.neuron.2014.02.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beckervordersandforth R, Tripathi P, Ninkovic J et al (2010) In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 7:744–758. https://doi.org/10.1016/j.stem.2010.11.017

    Article  CAS  PubMed  Google Scholar 

  45. Mich JK, Signer RA, Nakada D et al (2014) Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. elife 3. https://doi.org/10.7554/eLife.02669

  46. Daynac M, Chicheportiche A, Pineda JR et al (2013) Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage. Stem Cell Res 11:516–528. https://doi.org/10.1016/j.scr.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  47. Daynac M, Morizur L, Kortulewski T et al (2015) Cell sorting of neural stem and progenitor cells from the adult mouse subventricular zone and live-imaging of their cell cycle dynamics. J Vis Exp. https://doi.org/10.3791/53247

  48. Morizur L, Chicheportiche A, Gauthier LR et al (2018) Distinct molecular signatures of quiescent and activated adult neural stem cells reveal specific interactions with their microenvironment. Stem Cell Rep 11:565–577. https://doi.org/10.1016/j.stemcr.2018.06.005

    Article  CAS  Google Scholar 

  49. Daynac M, Morizur L, Chicheportiche A et al (2016) Age-related neurogenesis decline in the subventricular zone is associated with specific cell cycle regulation changes in activated neural stem cells. Sci Rep:6. https://doi.org/10.1038/srep21505

  50. Daynac M, Pineda JR, Chicheportiche A et al (2014) TGFβ lengthens the G1 phase of stem cells in aged mouse brain. Stem Cells 32:3257–3265. https://doi.org/10.1002/stem.1815

    Article  CAS  PubMed  Google Scholar 

  51. Alam MJ, Kitamura T, Saitoh Y et al (2018) Adult neurogenesis conserves hippocampal memory capacity. J Neurosci 38:6854–6863. https://doi.org/10.1523/JNEUROSCI.2976-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809. https://doi.org/10.1126/science.1083328

    Article  CAS  PubMed  Google Scholar 

  53. Lazarini F, Mouthon M-A, Gheusi G et al (2009) Cellular and behavioral effects of cranial irradiation of the subventricular zone in adult mice. PLoS One 4. https://doi.org/10.1371/journal.pone.0007017

  54. Feierstein CE, Lazarini F, Wagner S et al (2010) Disruption of adult neurogenesis in the olfactory bulb affects social interaction but not maternal behavior. Front Behav Neurosci 4. https://doi.org/10.3389/fnbeh.2010.00176

  55. Valley MT, Mullen TR, Schultz LC et al (2009) Ablation of mouse adult neurogenesis alters olfactory bulb structure and olfactory fear conditioning. Front Neurosci 3. https://doi.org/10.3389/neuro.22.003.2009

  56. Amano T, Inamura T, Wu C-M et al (2002) Effects of single low dose irradiation on subventricular zone cells in juvenile rat brain. Neurol Res 24:809–816. https://doi.org/10.1179/016164102101200771

    Article  PubMed  Google Scholar 

  57. Hellström NAK, Björk-Eriksson T, Blomgren K, Kuhn HG (2009) Differential recovery of neural stem cells in the subventricular zone and dentate gyrus after ionizing radiation. Stem Cells 27:634–641. https://doi.org/10.1634/stemcells.2008-0732

    Article  CAS  PubMed  Google Scholar 

  58. Fukuda H, Fukuda A, Zhu C et al (2004) Irradiation-induced progenitor cell death in the developing brain is resistant to erythropoietin treatment and caspase inhibition. Cell Death Differ 11:1166. https://doi.org/10.1038/sj.cdd.4401472

    Article  CAS  PubMed  Google Scholar 

  59. Osato K, Sato Y, Ochiishi T et al (2010) Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation. Cell Death Dis 1:e84. https://doi.org/10.1038/cddis.2010.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Baser A, Skabkin M, Kleber S et al (2019) Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. Nature 566:100–104. https://doi.org/10.1038/s41586-019-0888-x

    Article  CAS  PubMed  Google Scholar 

  61. Achanta P, Capilla-Gonzalez V, Purger D et al (2012) Subventricular zone localized irradiation affects the generation of proliferating neural precursor cells and the migration of neuroblasts. Stem Cells 30:2548–2560. https://doi.org/10.1002/stem.1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Capilla-Gonzalez V, Guerrero-Cazares H, Bonsu JM et al (2014) The subventricular zone is able to respond to a demyelinating lesion after localized radiation. Stem Cells 32:59–69. https://doi.org/10.1002/stem.1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Panagiotakos G, Alshamy G, Chan B et al (2007) Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS One 2:e588. https://doi.org/10.1371/journal.pone.0000588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Begolly S, Olschowka JA, Love T et al (2018) Fractionation enhances acute oligodendrocyte progenitor cell radiation sensitivity and leads to long term depletion. Glia 66:846–861. https://doi.org/10.1002/glia.23288

    Article  PubMed  Google Scholar 

  65. Pineda JR, Daynac M, Chicheportiche A et al (2013) Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol Med 5:548–562. https://doi.org/10.1002/emmm.201202197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Monje ML, Palmer T (2003) Radiation injury and neurogenesis. Curr Opin Neurol 16:129–134. https://doi.org/10.1097/01.wco.0000063772.81810.b7

    Article  PubMed  Google Scholar 

  67. de Graaf RA (2019) In vivo NMR spectroscopy: principles and techniques, 3rd edn. John Wiley & Sons, New York

    Book  Google Scholar 

  68. Le Bihan D (1995) Magnetic resonance imaging of diffusion and perfusion: applications to functional imaging. Raven Press, New York

    Book  Google Scholar 

  69. Haacke EM (1999) Magnetic resonance imaging; physical principles and sequence design. Wiley, New York

    Google Scholar 

  70. Jahng G-H, Li K-L, Ostergaard L, Calamante F (2014) Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol 15:554. https://doi.org/10.3348/kjr.2014.15.5.554

    Article  PubMed  PubMed Central  Google Scholar 

  71. Petcharunpaisan S, Ramalho J, Castillo M (2010) Arterial spin labeling in neuroimaging. World J Radiol 2:384–398. https://doi.org/10.4329/wjr.v2.i10.384

    Article  PubMed  PubMed Central  Google Scholar 

  72. Le Bihan D (2019) What can we see with IVIM MRI? NeuroImage 187:56–67. https://doi.org/10.1016/j.neuroimage.2017.12.062

    Article  PubMed  Google Scholar 

  73. Le Bihan D, Breton E (1985) Imagerie de diffusion in-vivo par résonance magnétique nucléaire. Comptes-Rendus de l'Académie des Sciences 93:27–34

    Google Scholar 

  74. Le Bihan D (2014) Diffusion MRI: what water tells us about the brain. EMBO Mol Med 6:569–573

    Google Scholar 

  75. Iima M, Le Bihan D (2015) Clinical Intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology 278:13–32. https://doi.org/10.1148/radiol.2015150244

    Article  Google Scholar 

  76. Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23:698–710. https://doi.org/10.1002/nbm.1518

    Article  PubMed  PubMed Central  Google Scholar 

  77. Le Bihan D, Mangin J-F, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546. https://doi.org/10.1002/jmri.1076

    Article  PubMed  Google Scholar 

  78. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    Article  CAS  Google Scholar 

  79. Keilholz SD, Pan W-J, Billings J et al (2017) Noise and non-neuronal contributions to the BOLD signal: applications to and insights from animal studies. NeuroImage 154:267–281. https://doi.org/10.1016/j.neuroimage.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  80. Prost RW (2008) Magnetic resonance spectroscopy. Med Phys 35:4530–4544. https://doi.org/10.1118/1.2975225

    Article  CAS  PubMed  Google Scholar 

  81. Jiang X, Yuan L, Engelbach JA et al (2015) A gamma-knife-enabled mouse model of cerebral single-hemisphere delayed radiation necrosis. PLoS One 10:e0139596. https://doi.org/10.1371/journal.pone.0139596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wadghiri YZ, Blind JA, Duan X et al (2004) Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse brain development. NMR Biomed 17:613–619. https://doi.org/10.1002/nbm.932

    Article  CAS  PubMed  Google Scholar 

  83. Gazdzinski LM, Cormier K, Lu FG et al (2012) Radiation-induced alterations in mouse brain development characterized by magnetic resonance imaging. Int J Radiat Oncol Biol Phys 84:e631–e638. https://doi.org/10.1016/j.ijrobp.2012.06.053

    Article  PubMed  Google Scholar 

  84. Nieman BJ, de Guzman AE, Gazdzinski LM et al (2015) White and gray matter abnormalities after cranial radiation in children and mice. Int J Radiat Oncol Biol Phys 93:882–891. https://doi.org/10.1016/j.ijrobp.2015.07.2293

    Article  PubMed  Google Scholar 

  85. Trivedi R, Khan AR, Rana P et al (2012) Radiation-induced early changes in the brain and behavior: serial diffusion tensor imaging and behavioral evaluation after graded doses of radiation. J Neurosci Res 90:2009–2019. https://doi.org/10.1002/jnr.23073

    Article  CAS  PubMed  Google Scholar 

  86. Verreet T, Quintens R, Van Dam D et al (2015) A multidisciplinary approach unravels early and persistent effects of X-ray exposure at the onset of prenatal neurogenesis. J Neurodev Disord 7. https://doi.org/10.1186/1866-1955-7-3

  87. Verreet T, Rangarajan JR, Quintens R et al (2016) Persistent impact of in utero irradiation on mouse brain structure and function characterized by MR imaging and Behavioral analysis. Front Behav Neurosci 10:83. https://doi.org/10.3389/fnbeh.2016.00083

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pérès EA, Etienne O, Grigis A et al (2018) Longitudinal study of irradiation-induced brain microstructural alterations with S-index, a diffusion MRI biomarker, and MR spectroscopy. Int J Radiat Oncol Biol Phys 102:1244–1254. https://doi.org/10.1016/j.ijrobp.2018.01.070

    Article  PubMed  Google Scholar 

  89. de Guzman AE, Gazdzinski LM, Alsop RJ et al (2015) Treatment age, dose and sex determine neuroanatomical outcome in irradiated juvenile mice. Radiat Res 183:541–549. https://doi.org/10.1667/RR13854.1

    Article  CAS  PubMed  Google Scholar 

  90. Kumar M, Haridas S, Trivedi R et al (2013) Early cognitive changes due to whole body γ-irradiation: a behavioral and diffusion tensor imaging study in mice. Exp Neurol 248:360–368. https://doi.org/10.1016/j.expneurol.2013.06.005

    Article  PubMed  Google Scholar 

  91. Gupta M, Mishra SK, Kumar BSH et al (2017) Early detection of whole body radiation induced microstructural and neuroinflammatory changes in hippocampus: a diffusion tensor imaging and gene expression study. J Neurosci Res 95:1067–1078. https://doi.org/10.1002/jnr.23833

    Article  CAS  PubMed  Google Scholar 

  92. Constanzo J, Dumont M, Lebel R et al (2018) Diffusion MRI monitoring of specific structures in the irradiated rat brain. Magn Reson Med 80:1614–1625. https://doi.org/10.1002/mrm.27112

    Article  PubMed  Google Scholar 

  93. Serduc R, van de Looij Y, Francony G et al (2008) Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy. Phys Med Biol 53:1153–1166. https://doi.org/10.1088/0031-9155/53/5/001

    Article  PubMed  Google Scholar 

  94. Watve A, Gupta M, Khushu S, Rana P (2018) Longitudinal changes in gray matter regions after cranial radiation and comparative analysis with whole body radiation: a DTI study. Int J Radiat Biol 94:532–541. https://doi.org/10.1080/09553002.2018.1466064

    Article  CAS  PubMed  Google Scholar 

  95. Saito S, Sawada K, Mori Y et al (2015) Brain and arterial abnormalities following prenatal X-ray irradiation in mice assessed by magnetic resonance imaging and angiography. Congenit Anom 55:103–106. https://doi.org/10.1111/cga.12101

    Article  Google Scholar 

  96. Constanzo J, Masson-Côté L, Tremblay L et al (2017) Understanding the continuum of radionecrosis and vascular disorders in the brain following gamma knife irradiation: an MRI study. Magn Reson Med 78:1420–1431. https://doi.org/10.1002/mrm.26546

    Article  CAS  PubMed  Google Scholar 

  97. Herynek V, Burian M, Jirák D et al (2004) Metabolite and diffusion changes in the rat brain after Leksell gamma knife irradiation. Magn Reson Med 52:397–402. https://doi.org/10.1002/mrm.20150

    Article  PubMed  Google Scholar 

  98. Gupta M, Rana P, Trivedi R et al (2013) Comparative evaluation of brain neurometabolites and DTI indices following whole body and cranial irradiation: a magnetic resonance imaging and spectroscopy study. NMR Biomed 26:1733–1741. https://doi.org/10.1002/nbm.3010

    Article  CAS  PubMed  Google Scholar 

  99. Kovács N, Szigeti K, Hegedűs N et al (2018) Multimodal PET/MRI imaging results enable monitoring the side effects of radiation therapy. Contrast Media Mol Imaging, In. https://www.hindawi.com/journals/cmmi/2018/5906471/. Accessed 29 May 2019

    Book  Google Scholar 

  100. Chan KC, Khong P-L, Cheung MM et al (2009) MRI of late microstructural and metabolic alterations in radiation-induced brain injuries. J Magn Reson Imaging 29:1013–1020. https://doi.org/10.1002/jmri.21736

    Article  PubMed  Google Scholar 

  101. Bálentová S, Hnilicová P, Kalenská D et al (2017) Effect of whole-brain irradiation on the specific brain regions in a rat model: metabolic and histopathological changes. Neurotoxicology 60:70–81. https://doi.org/10.1016/j.neuro.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  102. Yamaguchi M, Saito H, Suzuki M, Mori K (2000) Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. NeuroReport 11 (9):1991-1996

    Google Scholar 

  103. Couillard-Despres S, Finkl R, Winner B et al (2008) In vivo optical imaging of neurogenesis: watching new neurons in the intact brain. Mol Imaging 7. https://doi.org/10.2310/7290.2008.0004

  104. Leung HWC, Chan ALF, Chang MB (2016) Brain dose-sparing radiotherapy techniques for localized intracranial germinoma: Case report and literature review of modern irradiation. Cancer Radiother 20:210-216. https://doi.org/10.1016/j.canrad.2016.02.007

  105. Kazda T, Jancalek R, Pospisil P et al (2014) Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol 9:139. https://doi.org/10.1186/1748-717X-9-139

    Article  PubMed  PubMed Central  Google Scholar 

  106. Welzel G, Fleckenstein K, Schaefer J et al (2008) Memory function before and after whole brain radiotherapy in patients with and without brain metastases. Int J Radiat Oncol Biol Phys 72:1311–1318. https://doi.org/10.1016/j.ijrobp.2008.03.009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Mouton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mouton, L. et al. (2021). Experimental and Preclinical Tools to Explore the Main Neurological Impacts of Brain Irradiation: Current Insights and Perspectives. In: Seano, G. (eds) Brain Tumors. Neuromethods, vol 158. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0856-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0856-2_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-0855-5

  • Online ISBN: 978-1-0716-0856-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics