Skip to main content

Osmotic Treatment for Quantifying Cell Wall Elasticity in the Sepal of Arabidopsis thaliana

  • Protocol
  • First Online:
Plant Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2094))

Abstract

Elastic properties of the cell wall play a key role in regulating plant growth and morphogenesis; however, measuring them in vivo remains a challenge. Although several new methods have recently become available, they all have substantial drawbacks. Here we describe a detailed protocol for osmotic treatments, which is based on the idea of releasing the turgor pressure within the cell and measuring the resulting deformation. When placed in hyperosmotic solution, cells lose water via osmosis and shrink. Confocal images of the tissue, taken before and after this treatment, are quantified using high-resolution surface projections in MorphoGraphX. The cell shrinkage observed can then be used to estimate cell wall elasticity. This allows qualitative comparisons of cell wall properties within organs or between genotypes and can be combined with mechanical simulations to give quantitative estimates of the cells’ Young’s moduli. We use the abaxial sepal of Arabidopsis thaliana as an easily accessible model system to present our approach, but it can potentially be used on many other plant organs. The main challenges of this technique are choosing the optimal concentration of the hyperosmotic solution and producing high-quality confocal images (with cell walls visualized) good enough for segmentation in MorphoGraphX.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forouzesh E, Goel A, Mackenzie SA, Turner JA (2013) In vivo extraction of Arabidopsis cell turgor pressure using nanoindentation in conjunction with finite element modeling. Plant J 73:509–520

    Article  CAS  Google Scholar 

  2. Beauzamy L, Derr J, Boudaoud A (2015) Quantifying hydrostatic pressure in plant cells by using indentation with an Atomic Force Microscope. Biophys J 108:2448–2456

    Article  CAS  Google Scholar 

  3. Milani P, Gholamirad M, Traas J, Arnéodo A, Boudaoud A, Argoul F et al (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using Atomic Force Microscopy. Plant J 67:1116–1123

    Article  CAS  Google Scholar 

  4. Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L, Weber A, Bayer E, Schorderet M et al (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096–1109

    Article  CAS  Google Scholar 

  5. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  Google Scholar 

  6. Hong L, Dumond M, Tsugawa S, Sapala A, Routier-Kierzkowska A-L, Zhou Y et al (2016) Variable cell growth yields reproducible organ development through spatiotemporal averaging. Dev Cell 38:15–32

    Article  CAS  Google Scholar 

  7. Elsayad K, Werner S, Gallemí M, Kong J, Guajardo ERS, Zhang L et al (2016) Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission—Brillouin imaging. Sci Signal 9:1–13

    Article  Google Scholar 

  8. Peaucelle A, Braybrook SA, LeGuillou L, Bron E, Kuhlemeier C, Höfte H (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21:1720–1726

    Article  CAS  Google Scholar 

  9. Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A et al (2014) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. elife 3:e01967. https://doi.org/10.7554/eLife.01967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beauzamy L, Louveaux M, Hamant O, Boudaoud A (2015) Mechanically, the shoot apical meristem of Arabidopsis behaves like a shell inflated by a pressure of about 1 MPa. Front Plant Sci 6:1–10

    Article  Google Scholar 

  11. Majda M, Grones P, Sintorn IM, Vain T, Milani P, Krupinski P, Zagorska-Marek B, Viotti C, Jonsson H, Mellerowicz E, Hamant O, Robert S (2017) Mechanochemical polarization of contiguous cell walls shapes plant pavement cells. Dev Cell 43:290–304

    Article  CAS  Google Scholar 

  12. Routier-Kierzkowska A-L, Weber A, Kochova P, Felekis D, Nelson BJ, Kuhlemeier C et al (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol 158:1514–1522

    Article  CAS  Google Scholar 

  13. Hayot CM, Forouzesh E, Goel A, Avramova Z, Turner J (2012) Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation. J Exp Bot 63:2525–2540

    Article  CAS  Google Scholar 

  14. Bolduc J-E, Lewis LJ, Aubin C-E, Geitmann A (2006) Finite-element analysis of geometrical factors in micro-indentation of pollen tubes. Biomech Model Mechanobiol 5:227–236

    Article  Google Scholar 

  15. Wang L, Hukin D, Pritchard J, Thomas C (2006) Comparison of plant cell turgor pressure measurement by pressure probe and micromanipulation. Biotechnol Lett 28:1147–1150

    Article  CAS  Google Scholar 

  16. Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943

    Article  CAS  Google Scholar 

  17. Mosaliganti KR, Noche RR, Xiong F, Swinburne I, Megason SG (2012) ACME: Automated Cell Morphology Extractor for comprehensive reconstruction of cell membranes. PLoS Comput Biol 8(12):e1002780. https://doi.org/10.1371/journal.pcbi.1002780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson S, Huflejt M, Barbier de Reuille P, Braybrook S, Schorderet M, Reinhardt D et al (2017) An automated confocal micro-extensometer enables in vivo quantification of mechanical properties with cellular resolution. Plant Cell 29:2959–2973

    Article  CAS  Google Scholar 

  19. Bringmann M, Bergmann DC (2017) Tissue-wide mechanical forces influence the polarity of stomatal stem cells in Arabidopsis. Curr Biol 27:877–883

    Article  CAS  Google Scholar 

  20. Weber A, Braybrook S, Huflejt M, Mosca G, Routier-Kierzkowska AL, Smith RS (2015) Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments. J Exp Bot 66:3229–3241

    Article  CAS  Google Scholar 

  21. Barbier de Reuille P, Routier-Kierzkowska A-L, Kierzkowski D, Bassel GW, SchĂĽpbach T, Tauriello G et al (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. elife 4:05864. https://doi.org/10.7554/eLife.05864

    Article  CAS  PubMed  Google Scholar 

  22. Oparka KJ (1994) Plasmolysis: new insights into an old process. New Phytol 67:571–591

    Article  Google Scholar 

  23. Mosca G, Sapala A, Strauss S, Routier-Kierzkowska AL, Smith RS (2017) On the micro-indentation of plant cells in a tissue context. Phys Biol 14:015003. https://doi.org/10.1088/1478-3975/aa5698

    Article  CAS  PubMed  Google Scholar 

  24. Roeder AHK, Chickarmane V, Cunha A, Obara B, Manjunath BS, Meyerowitz EM (2010) Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biol 8:e1000367. https://doi.org/10.1371/journal.pbio.1000367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska AL, Kierzkowski D, Roeder AHK et al (2016) A mechanical feedback restricts sepal growth and shape in Arabidopsis. Curr Biol 26:1019–1028

    Article  CAS  Google Scholar 

  26. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Daniel Kierzkowski for guidance in tissue dissection and Gabriella Mosca and Mingyuan Zhou for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sapala, A., Smith, R.S. (2020). Osmotic Treatment for Quantifying Cell Wall Elasticity in the Sepal of Arabidopsis thaliana. In: Naseem, M., Dandekar, T. (eds) Plant Stem Cells. Methods in Molecular Biology, vol 2094. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0183-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0183-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0182-2

  • Online ISBN: 978-1-0716-0183-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics