Skip to main content

Basic Approaches

  • Chapter
  • First Online:
Book cover Vulnerable Systems
  • 935 Accesses

Abstract

The two main outputs of a vulnerability assessment of critical infrastructures (CIs) are the quantification of system vulnerability indicators and the identification of critical elements

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  Google Scholar 

  • Amaral LAN, Scala A, Barthélémy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA 97:11149–11152

    Article  Google Scholar 

  • Angel M, Werley A-K (2007) Stochastic model for power grid dynamics. In: Proceedings of the 40th Hawaii international conference on system sciences. January 3–6, 2007, Big Island, Hawaii

    Google Scholar 

  • Apostolakis E-G, Lemon M-D (2005) A screening methodology for the identification and ranking of infrastructure vulnerabilities due to terrorism. Risk Anal 25(2):361–376

    Article  Google Scholar 

  • Augutis J, Krikštolaitis R, Šidlauskas K, Martišauskas L, Matuziene V (2010) Modeling of energy supply disturbances in network systems. In: Briš R, Guedes Soares C, Martorell S (eds) Reliability, risk and safety: theory and applications. Taylor and Francis, London

    Google Scholar 

  • Billington R, Li W (1994) Reliability assessment of electric power systems using Monte Carlo methods. Plenum Press, New York

    Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308

    Article  MathSciNet  Google Scholar 

  • Buzna L, Peters K, Ammoser H, Kühnert C, Helbing D (2007) Efficient response to cascading disaster spreading. Phys Rev E 75(5):056107

    Article  Google Scholar 

  • Cadini F, Zio E, Petrescu C-A (2009) Using centrality measures to rank the importance of the components of a complex network infrastructure. In: Proceedings of CRITIS’08, 13–15 October 2008, Rome, Italy, pp 155–167

    Google Scholar 

  • Casalicchio E, Galli E, Tucci S (2007) Federated agent-based modeling and simulation approach to study interdependencies in IT critical infrastructures. In: Proceedings of the 11th IEEE symposium on distributed simulation and real-time applications, Chania, Crete Island, Greece

    Google Scholar 

  • Chassin P-D, Posse C (2005) Evaluating North American electric grid reliability using the Barabasi–Albert network model. Physica A 355:667–677

    Article  Google Scholar 

  • Chen J, Thorp S-J, Dobson I (2005) Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model. Int J Electr Power Energ Syst 27:318–326

    Article  Google Scholar 

  • Coffman E-G Jr, Ge Z, Misra V, Towsley D (2002) Network resilience: exploring cascading failures within BGP. In: Proceedings of the 40th annual Allerton conference on communications, computing and control, Monticello, Illinois, USA

    Google Scholar 

  • Cox D (1972) Regression models and life tables (with discussion). J R Stat Soc Ser B 34(2):187–220

    MATH  Google Scholar 

  • Crucitti P, Latora V, Marchiori M (2004) Model for cascading failures in complex networks. Phys Rev E 69:045104(R)

    Article  Google Scholar 

  • Crucitti P, Latora V, Porta S (2006) Centrality in networks of urban streets. Chaos 16(1–9):015113

    Article  Google Scholar 

  • D’Inverno M, Luck M (2004) Understanding agent systems. Springer, Berlin

    MATH  Google Scholar 

  • Debon A, Carrion A, Cabrera E, Solano H (2010) Comparing risk of failure models in water supply networks using ROC curves. Reliab Eng Syst Saf 95:43–48

    Article  Google Scholar 

  • Dekker AH (2005) Simulating network robustness for critical infrastructure networks, conferences in research and practice in information technology. In: Estivill-Castro V (ed) Proceedings of the 28th Australasian computer science conference, the University of Newcastle, vol 38. Newcastle, Australia

    Google Scholar 

  • Dobson I, Carreras BA, Lynch V, Newman DE (2004) Complex systems analysis of series of blackouts: cascading failure, criticality and self-organization, bulk power system dynamics and control—VI. Cortina d’Ampezzo, Italy, pp 438–451

    Google Scholar 

  • Dobson I, Carreras BA, Newman DE (2005) A loading-dependent model of probabilistic cascading failure. Prob Eng Inform Sci 19:15–32

    MATH  MathSciNet  Google Scholar 

  • Doguc O, Ramirez-Marquez EJ (2009) A generic method for estimating system reliability using Bayesian networks. Reliab Eng Syst Saf 94:542–550

    Article  Google Scholar 

  • Dueñas-Osorio L, Vemuru S-M (2009) Cascading failures in complex infrastructure systems. Struct Saf 31:157–167

    Article  Google Scholar 

  • Dueñas-Osorio L, Craig IJ, Goodno JB, Bostrom A (2007) Interdependent response of networked systems. J Infrastruct Syst 13(3):185–194

    Article  Google Scholar 

  • Eusgeld I, Kröger W, Sansavini G, Schläpfer M, Zio E (2009) The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures. Reliab Eng Syst Saf 94(5):954–963

    Article  Google Scholar 

  • Flammini F, Gaglione A, Mazzocca N, Pragliola C (2009) Quantitative security risk assessment and management for railway transportation infrastructures. In: Proceedings of critical information infrastructure security, third international workshop, CRITIS 2008, Rome, Italy, October 13–15, 2008. Revised papers, LNCS, Vol. 5508. Springer-Verlag, Berlin, Heidelberg, pp 180–189

    Google Scholar 

  • Glass JR, Beyeler EW, Stamber LK (2004) Advanced simulation for analysis of critical infrastructure: Abstract cascades, the electric power grid, and fedwire 1 (SNL paper SAND 2004-4239). Albuquerque, New Mexico 87185 and Livermore, California 94550

    Google Scholar 

  • Guida M, Longo M, Postiglione F (2010) Reliability analysis of next generation mobile networks. In: Briš R, Guedes Soares C, Martorell S (eds) Reliability, risk and safety: theory and applications. Taylor and Francis, London

    Google Scholar 

  • Hines P, Blumsack S (2008) A centrality measure for electrical networks. In: Proceedings of the 41st Hawaii international conference on system science, Big Island, Hawaii

    Google Scholar 

  • Hopkinson K, Birman K, Giovanini R, Coury D, Wang X, Thorp J (2003) EPOCHS: integrated commercial off-the-shelf software for agent-based electric power and communication simulation. In: Proceedings of the 2003 winter simulation conference, New Orleans, LA, 7–10 December 2003, pp 1158–1166

    Google Scholar 

  • Iyer MS, Nakayama KM, Gerbessiotis VA (2009) A Markovian dependability model with cascading failures. IEEE Trans Comput 58(9):1238–1249

    Article  MathSciNet  Google Scholar 

  • Jeong H, Mason SP, Barabasi A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  Google Scholar 

  • Johansson J, Jonsson H (2009) A model for vulnerability analysis of interdependent infrastructure networks. In: Martorell et al. (eds) Safety, reliability and risk analysis: theory, methods and applications. Proceedings of ESREL 2008 and 17th SRA Europe annual conference, Valencia, Spain, Taylor & Francis Group, London, 22–25 September 2008

    Google Scholar 

  • Kinney R, Crucitti P, Albert R, Latora V (2005) Modeling cascading failures in the North American power grid. Eur Phys J B 46:101–107

    Article  Google Scholar 

  • Kleiner Y, Rajani B (2001) Comprehensive review of structural deterioration of water mains: statistical models. Urban Water 3(3):131–150

    Article  Google Scholar 

  • Koonce AM, Apostolakis GE, Cook BK (2008) Bulk power risk analysis: ranking infrastructure elements according to their risk significance. Int J Electr Power Energy Syst 30:169–183

    Article  Google Scholar 

  • Krings A, Oman P (2002) A simple GSPN for modeling common mode failures in critical infrastructures. In: Proceedings of the 36th annual Hawaii international conference on system sciences (HICSS’03), Big Island, Hawaii

    Google Scholar 

  • Langeron Y, Barros A, Grall A, Bérenguer C (2010) Reliability assessment of network-based safety-related systems. In: Briš R, Guedes Soares C, Martorell S (eds) Reliability, risk and safety: theory and applications. Taylor and Francis, London

    Google Scholar 

  • Laprie J-C, Kanoun K, Kaâniche M (2007) Modelling interdependencies between the electricity and information infrastructures. In: Proceedings of the 26th international conference on computer safety, reliability, and security (SAFECOMP 2007), Nuremberg, Germany, LNCS 4680/2009

    Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701 (1–4)

    Article  Google Scholar 

  • Latora V, Marchoiri M (2005) Vulnerability and protection of infrastructure networks. Phys Rev E 71:015103 (1–4)

    Article  Google Scholar 

  • Lord D, Washington PS, Ivan NJ (2005) Poisson, Poisson-gamma and zero inflated regression models of motor vehicle crashes: balancing statistical fit and theory. Accid Anal Prev 37:35–46

    Article  Google Scholar 

  • Luck M, McBurney P, Preist C (2003) Agent technology: enabling next generation computing (A roadmap for agent based computing). AgentLink II. University of Southampton, Southampton, UK

    Google Scholar 

  • Marseguerra M, Zio E (2002) Basics of the Monte Carlo method with application to system reliability. LiLoLe-Verlag GmbH, Hagen, Germany

    Google Scholar 

  • McCullagh P, Nelder J (1989) Generalized linear models. Chapman & Hall, London

    MATH  Google Scholar 

  • MIA (2010) Definition of a methodology for the assessment of mutual interdependencies between ICT and electricity generation/transmission infrastructures. Final report, September 2010, Italian National Agency for New Technology, Energy and Environment, Italy

    Google Scholar 

  • Moore AD (2006) Application of the API/NPRA SVA methodology to transportation security issues. J Hazard Mater 130:107–121

    Article  Google Scholar 

  • Morgan MG, Florig HK, DeKay ML, Fischbeck P (2000) Categorizing risks for risk ranking. Risk Anal 20:49–58

    Article  Google Scholar 

  • Motter A-E (2004) Cascade control and defense in complex networks. Phys Rev Lett 93(9):098701(1-4)

    Article  Google Scholar 

  • Motter A-E, Lai Y-C (2002) Cascade-based attacks on complex networks. Phys Rev E 66(1–4):065102

    Google Scholar 

  • Newman D-E, Nkei B, Carreras BA, Dobson I, Lynch VE, Gradney P (2005) Risk assessment in complex interacting infrastructure systems. In: Proceedings of the 38th Hawaii international conference on system sciences, Big Island, Hawaii

    Google Scholar 

  • Panzieri S, Setolaand R, Ulivi G (2004) An agent based simulator for critical interdependent infrastructures. In: Proceedings of the 2nd international conference on critical infrastructures CRIS2004: October 25–27, 2004, Grenoble, France

    Google Scholar 

  • Paté-Cornell ME, Guikema SD (2002) Probabilistic modeling of terrorist threats: a systems analysis approach to setting priorities among countermeasures. Mil Oper Res 7(3):5–23

    Google Scholar 

  • Piwowar J, Chatelet E, Laclemence P (2009) An efficient process to reduce infrastructure vulnerabilities facing malevolence. Reliab Eng Syst Saf 94:1869–1877

    Article  Google Scholar 

  • Rosato V, Bologna S, Tiriticco F (2007) Topological properties of high-voltage electrical transmission networks. Electr Pow Syst Res 77:99–105

    Article  Google Scholar 

  • Schläpfer M, Kessler T, Kröger W (2008) Reliability analysis of electric power systems using an object-oriented hybrid modeling approach. In: Proceedings of the 16th power systems computation conference, Glasgow

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  Google Scholar 

  • Sultana S, Chen Z (2009) Modeling flood induced interdependencies among hydroelectricity generating infrastructures. J Environ Manage 90:3272–3282

    Article  Google Scholar 

  • Watts D-J (2002) A simple model of global cascades on random networks. Proc Natl Acad Sci USA 99(9):5766–5771

    Article  MATH  MathSciNet  Google Scholar 

  • Watts D-J, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 39:440–442

    Article  Google Scholar 

  • Yamijala S, Guikema DS, Brumbelow K (2009) Statistical models for the analysis of water distribution system pipe break data. Reliab Eng Syst Saf 94:282–293

    Article  Google Scholar 

  • Zimmerman R (2001) Social implications of infrastructure network interactions. J Urban Technol 8(3):97–119

    Article  Google Scholar 

  • Zio E, Sansavini G (2008) Modeling failure cascades in networks systems due to distributed random disturbances and targeted intentional attacks. In: Martorell et al. (eds) Safety, reliability and risk analysis: theory, methods and applications. Proceedings of ESREL 2008 and 17th SRA Europe annual conference, 22–25 September 2008, Valencia, Spain, Taylor & Francis Group, London

    Google Scholar 

  • Zio E, Sansavini G (2011a) Component criticality in failure cascade processes of network systems. Risk Anal. doi: 10.1111/j.1539-6924.2011.01584.x

  • Zio E, Sansavini G (2011b) Modeling interdependent network systems for identifying cascade-safe operating margins. IEEE Trans Reliab 60(1):94–101

    Article  Google Scholar 

  • Zio E, Sansavini G, Maja R, Marchionni G (2008) An analytical approach to the safety of road networks. Int J Reliab Qual Saf Eng 15(1):67–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kröger .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kröger, W., Zio, E. (2011). Basic Approaches. In: Vulnerable Systems. Springer, London. https://doi.org/10.1007/978-0-85729-655-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-655-9_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-654-2

  • Online ISBN: 978-0-85729-655-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics