Skip to main content

Hyperelliptic Curves and Quadratic Residue Codes

  • Chapter
Selected Unsolved Problems in Coding Theory

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1903 Accesses

Abstract

For an odd prime p and a nonempty subset SGF(p), consider the hyperelliptic curve X S defined by

$$y^2=f_S(x),$$

where f S (x)=∏aS(xa). Since the days of E. Artin in the early 1900s, mathematicians have searched for good estimates for the number of points on such curves. In the late 1940s and early 1950s, A. Weil developed good estimates when the genus is small relative to the size of the prime p. When the genus is large compared to p, good estimates are still unknown.

A long-standing problem has been to develop “good” binary linear codes to be used for error-correction. For example, is the Gilbert–Varshamov bound asymptotically exact in the case of binary codes?

This chapter is devoted to explaining a basic link between these two unsolved problems. Using a connection between binary quadratic residue codes and hyperelliptic curves over GF(p), this chapter investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p, there exists a subset SGF(p) for which the bound |X S (GF(p))|>1.39p holds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This code is defined in Sect. 5.5 below.

  2. 2.

    This overly simplified definition brings to mind the famous Felix Klein quote: “Everyone knows what a curve is, until he has studied enough mathematics to become confused through the countless number of possible exceptions.” Please see Tsafsman and Vladut [TV] or Schmidt [Sch] for a rigorous treatment.

  3. 3.

    These codes will be defined in Sect. 5.7 below.

  4. 4.

    See, for example, Weil [W] or Schmidt [Sch], Lemma 2.11.2.

References

  1. Bazzi, L., Mitter, S.: Some constructions of codes from group actions. Preprint (2001). Appeared as Some randomized code constructions from group actions. IEEE Trans. Inf. Theory 52, 3210–3219 (2006). www.mit.edu/~louay/recent/rgrpactcodes.pdf

    Article  Google Scholar 

  2. Chapman, R.: Preprint sent to J. Joyner (2008)

    Google Scholar 

  3. Charters, P.: Generalizing binary quadratic residue codes to higher power residues over larger fields. Finite Fields Appl. 15, 404–413 (2009)

    Article  MathSciNet  Google Scholar 

  4. Duursma, I.: Extremal weight enumerators and ultraspherical polynomials. Discrete Math. 268(1–3), 103–127 (2003)

    Article  MathSciNet  Google Scholar 

  5. Gaborit, P.: Quadratic double circulant codes over fields. J. Comb. Theory, Ser. A 97, 85–107 (2002)

    Article  MathSciNet  Google Scholar 

  6. Goppa, V.D.: Bounds for codes. Dokl. Akad. Nauk SSSR 333, 423 (1993)

    MATH  Google Scholar 

  7. Helleseth, T.: Legendre sums and codes related to QR codes. Discrete Appl. Math. 35, 107–113 (1992)

    Article  MathSciNet  Google Scholar 

  8. Helleseth, T., Voloch, J.F.: Double circulant quadratic residue codes. IEEE Trans. Inf. Theory 50(9), 2154–2155 (2004)

    Article  MathSciNet  Google Scholar 

  9. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge Univ. Press, Cambridge (2003)

    Book  Google Scholar 

  10. Jiang, T., Vardy, A.: Asymptotic improvement of the Gilbert–Varshamov bound on the size of binary codes. IEEE Trans. Inf. Theory 50, 1655–1664 (2004)

    Article  MathSciNet  Google Scholar 

  11. Joyner, D.: On quadratic residue codes and hyperelliptic curves. Discrete Math. Theor. Comput. Sci. 10(1), 129–126 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Lagarias, J.C., Odlyzko, A.M.: Effective versions of the Chebotarev density theorem. In: Fröhlich, A. (ed.) Algebraic Number Fields (L-functions and Galois theory), pp. 409–464. Academic Press, San Diego (1977)

    Google Scholar 

  13. McEliece, R., Baumert, L.D.: Weights of irreducible cyclic codes. Inf. Control 20, 158–175 (1972)

    Article  MathSciNet  Google Scholar 

  14. McEliece, R., Rumsey, H.: Euler products, cyclotomy, and coding. J. Number Theory 4, 302–311 (1972)

    Article  MathSciNet  Google Scholar 

  15. The SAGE Group: SAGE: Mathematical software, Version 4.6. http://www.sagemath.org/

  16. Schmidt, W.: Equations over Finite Fields: An Elementary Approach, 2nd edn. Kendrick Press (2004)

    MATH  Google Scholar 

  17. Schoof, R.: Families of curves and weight distributions of codes. Bull. Am. Math. Soc. (NS) 32, 171–183 (1995). http://arxiv.org/pdf/math.NT/9504222.pdf

    Article  MathSciNet  Google Scholar 

  18. Schoof, R., van der Vlugt, M.: Hecke operators and the weight distributions of certain codes. J. Comb. Theory, Ser. A 57, 163–186 (1991). http://www.mat.uniroma2.it/~schoof/vdvhecke.pdf

    Article  MathSciNet  Google Scholar 

  19. Serre, J.-P.: Quelques applications du théorème de densité de Chebotarev. Publ. Math. l’IHÉS 54, 123–201 (1981). Available: http://www.numdam.org/item?id=PMIHES_1981__54__123_0

    Article  Google Scholar 

  20. Shokrollahi, M.A.: Stickelberger codes. Des. Codes Cryptogr. 9, 203–213 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Stepanov, S.: Character sums and coding theory. In: Proceedings of the Third International Conference on Finite Fields and Applications, Glasgow, Scotland, pp. 355–378. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  22. Tarnanen, H.: An asymptotic lower bound for the character sums induced by the Legendre symbol. Bull. Lond. Math. Soc. 18, 140–146 (1986)

    Article  MathSciNet  Google Scholar 

  23. Tsfasman, M.A., Vladut, S.G.: Algebraic-Geometric Codes, Mathematics and Its Applications. Kluwer Academic, Dordrecht (1991)

    Book  Google Scholar 

  24. van der Geer, G., Schoof, R., van der Vlugt, M.: Weight formulas for ternary Melas codes. Math. Comput. 58, 781–792 (1992)

    Article  MathSciNet  Google Scholar 

  25. van der Vlugt, M.: Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes. J. Number Theory 55, 145–159 (1995)

    Article  MathSciNet  Google Scholar 

  26. Voloch, F.: Asymptotics of the minimal distance of quadratic residue codes. Preprint. Available: http://www.ma.utexas.edu/users/voloch/preprint.html

  27. Voloch, F.: Email communications (5-2006)

    Google Scholar 

  28. Wage, N.: Character sums and Ramsey properties of generalized Paley graphs. Integers 6, A18 (2006). Available: http://integers-ejcnt.org/vol6.html

    MathSciNet  MATH  Google Scholar 

  29. Weil, A.: On some exponential sums. Proc. Natl. Acad. Sci. 34, 204–207 (1948)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Joyner .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Joyner, D., Kim, JL. (2011). Hyperelliptic Curves and Quadratic Residue Codes. In: Selected Unsolved Problems in Coding Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8256-9_5

Download citation

Publish with us

Policies and ethics