Skip to main content

Graph Complexes with Loops and Wheels

  • Chapter
  • First Online:
Algebra, Arithmetic, and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 270))

Summary

Motivated by the problem of deformation quantization we introduce and study directed graph complexes with oriented loops and wheels – differential graded (dg) wheeled props. We develop a new technique for computing cohomology groups of such graph complexes and apply it to several concrete examples such as the wheeled completion of the operad of strongly homotopy Lie algebras and the wheeled completion of the dg prop of Poisson structures. The results lead to a new notion of a wheeled Poisson structure and to a new theorem on deformation quantization of arbitrary wheeled Poisson manifolds.

2000 Mathematics Subject Classifications: 17B66, 18D50, 53D17, 53D55

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. L. Gan, Koszul duality for dioperads, Math. Res. Lett. 10 (2003), no. 1, 109–124.

    MATH  MathSciNet  Google Scholar 

  2. M. Kontsevich, Formal (non)commutative symplectic geometry, Gel’fand mathematical seminars, 1990–1992, Birkhäuser, 1993, pp. 173–187.

    Google Scholar 

  3. M. Kontsevich, Letter to M. Markl, 2002.

    Google Scholar 

  4. M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.-L. Loday, Cyclic homology, Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  6. S. McLane, Categorical algebra, Bull. Amer. Math. Soc. 71 (1965), 40–106.

    Article  MathSciNet  Google Scholar 

  7. S.A. Merkulov, Nijenhuis infinity and contractible dg manifolds, math.ag/0403244, Compositio Mathematica (2005), no. 141, 1238–1254.

    Article  MATH  MathSciNet  Google Scholar 

  8. S.A. Merkulov, Deformation quantization of strongly homotopy lie algebras, 2006.

    Google Scholar 

  9. S.A. Merkulov, Prop profile of Poisson geometry, math.dg/0401034, Commun. Math. Phys. (2006), no. 262, 117–135.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Markl, S. Merkulov, and S. Shadrin, Wheeled PROPs, graph complexes and the master equation.

    Google Scholar 

  11. M. Markl and A. Voronov, PROPped-up graph cohomology, (2003) and this volume.

    Google Scholar 

  12. B. Vallette, A koszul duality for props, To appear in Trans. of Amer. Math. Soc. (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Merkulov .

Editor information

Editors and Affiliations

Additional information

To Yuri Ivanovich Manin on his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Merkulov, S.A. (2009). Graph Complexes with Loops and Wheels. In: Tschinkel, Y., Zarhin, Y. (eds) Algebra, Arithmetic, and Geometry. Progress in Mathematics, vol 270. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4747-6_10

Download citation

Publish with us

Policies and ethics