Skip to main content

Transition to Modern Number Theory

  • Chapter
  • 4454 Accesses

Part of the book series: Cornerstones ((COR))

Abstract

This chapter establishes Gauss’s Law of Quadratic Reciprocity, the theory of binary quadratic forms, and Dirichlet’s Theorem on primes in arithmetic progressions.

Section 1 outlines how the three topics of the chapter occurred in natural sequence and marked a transition as the subject of number theory developed a coherence and moved toward the kind of algebraic number theory that is studied today.

Section 2 establishes quadratic reciprocity, which is a reduction formula providing a rapid method for deciding solvability of congruences x2m mod pfor the unknown x when pis prime.

Sections 3–5 develop the theory of binary quadratic forms ax2 + bxy + cy2, where a, b, c are integers. The basic tool is that of proper equivalence of two such forms, which occurs when the two forms are related by an invertible linear substitution with integer coefficients and determinant 1. The theorems establish the finiteness of the number of proper equivalence classes for given discriminant, conditions for the representability of primes by forms of a given discriminant, canonical representatives of the finitely many proper equivalence classes of a given discriminant, a group law for proper equivalence classes of forms of the same discriminant that respects representability of integers by the classes, and a theory of genera that takes into account inequivalent forms whose values cannot be distinguished by linear congruences.

Sections 6–7 digress to leap forward historically and interpret the group lawfor proper equivalence classes of binary quadratic forms in terms of an equivalence relation on the nonzero ideals in the ring of integers of an associated quadratic number field.

Sections 8–10 concern Dirichlet’s Theorem on primes in arithmetic progressions. Section 8 discusses Euler's product formula for ∑n=1n−sand shows how Euler was able to modify it to prove that there are infinitely many primes 4k + 1 and infinitely many primes 4k + 3. Section 9 develops Dirichlet series as a tool to be used in the generalization, and Section 10 contains the proof of Dirichlet’s Theorem. Section 8 uses some elementary real analysis, and Sections 9–10 use both elementary real analysis and elementary complex analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. Knapp .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Anthony W. Knapp

About this chapter

Cite this chapter

Knapp, A.W. (2008). Transition to Modern Number Theory. In: Advanced Algebra. Cornerstones. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4613-4_1

Download citation

Publish with us

Policies and ethics