Skip to main content

Level Set Methods for Structural Inversion and Image Reconstruction

  • Reference work entry
Handbook of Mathematical Methods in Imaging
  • 5990 Accesses

Abstract

In this chapter, an introduction is given into the use of level set techniques for inverse problems and image reconstruction. Several approaches are presented which have been developed and proposed in the literature since the publication of the original (and seminal) paper by F. Santosa in 1996 on this topic. The emphasis of this chapter, however, is not so much on providing an exhaustive overview of all ideas developed so far, but on the goal of outlining the general idea of structural inversion by level sets, which means the reconstruction of complicated images with interfaces from indirectly measured data. As case studies, recent results (in 2D) from microwave breast screening, history matching in reservoir engineering, and crack detection are presented in order to demonstrate the general ideas outlined in this chapter on practically relevant and instructive examples. Various references and suggestions for further research are given as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  1. Abascal JFPJ, Lambert M, Lesselier D, Dorn O (2009) 3-D eddy-current imaging of metal tubes by gradient-based, controlled evolution of level sets. IEEE Trans Magn 44:4721–4729

    Article  Google Scholar 

  2. Alexandrov O, Santosa F (2005) A topology preserving level set method for shape optimization. J Comput Phys 204:121–130

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194: 363–393

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez D, Dorn O, Irishina N, Moscoso M (2009) Crack detection using a level set strategy. J Comput Phys 228:5710–57211

    Article  MathSciNet  MATH  Google Scholar 

  5. Ammari H, Calmon P, Iakovleva E (2008) Direct elastic imaging of a small inclusion. SIAM J Imaging Sci 1:169–187

    Article  MathSciNet  MATH  Google Scholar 

  6. Ammari H, Kang H (2004) Reconstruction of small inhomogeneities from boundary measurements. Lecture notes in mathematics, vol 1846. Springer, Berlin

    Book  MATH  Google Scholar 

  7. Amstutz S, Andrä H (2005) A new algorithm for topology optimization using a level-set method. J Comput Phys 216:573–588

    Article  Google Scholar 

  8. Ascher UM, Huang H, van den Doel K (2007) Artificial time integration. BIT Numer Math 47:3–25

    Article  MATH  Google Scholar 

  9. Bal G, Ren K (2006) Reconstruction of singular surfaces by shape sensitivity analysis and level set method. Math Model Meth Appl Sci 16:1347–1374

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben Hadj Miled MK, Miller EL (2007) A projection-based level-set approach to enhance conductivity anomaly reconstruction in electrical resistance tomography. Inverse Prob 23:2375–2400

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben Ameur H, Burger M, Hackl B (2004) Level set methods for geometric inverse problems in linear elasticity. Inverse Prob 20: 673–696

    Article  MathSciNet  MATH  Google Scholar 

  12. Benedetti M, Lesselier D, Lambert M, Massa A (2010) Multiple-shape reconstruction by means of mutliregion level sets. IEEE Trans Geosci Remote Sens 48:2330–2342

    Article  Google Scholar 

  13. Berg JM, Holmstrom K (1999) On parameter estimation using level sets. SIAM J Control Optim 37:1372–1393

    Article  MathSciNet  MATH  Google Scholar 

  14. Berre I, Lien M, Mannseth T (2007) A level set corrector to an adaptive multiscale permeability prediction. Comput Geosci 11: 27–42

    Article  MathSciNet  MATH  Google Scholar 

  15. Bonnet M, Guzina BB (2003) Sounding of finite solid bodies by way of topological derivative. Int J Numer Methods Eng 61:2344–2373

    Article  MathSciNet  Google Scholar 

  16. Burger M (2001) A level set method for inverse problems. Inverse Prob 17:1327–1355

    Article  MathSciNet  MATH  Google Scholar 

  17. Burger M, Osher S (2005) A survey on level set methods for inverse problems and optimal design. Eur J Appl Math 16:263–301

    Article  MathSciNet  MATH  Google Scholar 

  18. Burger M (2003) A framework for the construction of level set methods for shape optimization and reconstruction. Inter Free Bound 5: 301–329

    Article  MathSciNet  MATH  Google Scholar 

  19. Burger M (2004) Levenberg-Marquardt level set methods for inverse obstacle problems. Inverse Prob 20:259–282

    Article  MathSciNet  MATH  Google Scholar 

  20. Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194:344–362

    Article  MathSciNet  MATH  Google Scholar 

  21. Carpio A, Rapún M-L (2008) Solving inhomogeneous inverse problems by topological derivative methods. Inverse Prob 24:045014

    Article  Google Scholar 

  22. Céa J, Gioan A, Michel J (1973) Quelques résultats sur l’identification de domains. Calcolo 10(3–4):207–232

    Article  MathSciNet  Google Scholar 

  23. Céa J, Haug EJ (eds) 1981 Optimization of distributed parameter structures. Sijhoff & Noordhoff, Alphen aan den Rijn

    MATH  Google Scholar 

  24. Céa J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Meth Appl Mech Eng 188:713–726

    Article  MATH  Google Scholar 

  25. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10:266–277

    Article  MATH  Google Scholar 

  26. Chan TF, Tai X-C (2003) Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J Comput Phys 193:40–66

    Article  MathSciNet  Google Scholar 

  27. Chung ET, Chan TF, Tai XC (2005) Electrical impedance tomography using level set representation and total variational regularization. J Comput Phys 205:357–372

    Article  MathSciNet  MATH  Google Scholar 

  28. DeCezaro A, Leitão A, Tai X-C (2009) On multiple level-set regularization methods for inverse problems. Inverse Prob 25:035004

    Article  Google Scholar 

  29. Delfour MC, Zolésio J-P (1988) Shape sensitivity analysis via min max differentiability. SIAM J Control Optim 26:34–86

    Article  Google Scholar 

  30. Delfour MC, Zolésio J-P (2001) Shapes and geometries: analysis, differential calculus and optimization (SIAM advances in design and control). SIAM, Philadelphia

    MATH  Google Scholar 

  31. Dorn O, Lesselier D (2006) Level set methods for inverse scattering. Inverse Prob 22:R67–R131. doi:10.1088/0266-5611/22/4/R01

    Article  MathSciNet  MATH  Google Scholar 

  32. Dorn O, Lesselier D (2009) Level set methods for inverse scattering - some recent developments. Inverse Prob 25:125001. doi:10.1088/0266-5611/25/12/125001

    Article  MathSciNet  Google Scholar 

  33. Dorn O, Lesselier D 2007 Level set techniques for structural inversion in medical imaging. In: Deformable models. Springer, New York, pp 61–90

    Chapter  Google Scholar 

  34. Dorn O, Villegas R (2008) History matching of petroleum reservoirs using a level set technique. Inverse Prob 24:035015

    Article  MathSciNet  Google Scholar 

  35. Dorn O, Miller E, Rappaport C (2000) A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets. Inverse Prob 16:1119–1156

    Article  MathSciNet  MATH  Google Scholar 

  36. Duflot M (2007) A study of the representation of cracks with level sets. Int J Numer Methods Eng 70:1261–1302

    Article  MathSciNet  MATH  Google Scholar 

  37. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems (mathematics and its applications), vol 375. Kluwer, Dordrecht

    Google Scholar 

  38. Fang W (2007) Multi-phase permittivity reconstruction in electrical capacitance tomography by level set methods. Inverse Prob Sci Eng 15:213–247

    Article  MATH  Google Scholar 

  39. Feijóo RA, Novotny AA, Taroco E, Padra C (2003) The topological derivative for the Poisson problem. Math Model Meth Appl Sci 13: 1–20

    Article  Google Scholar 

  40. Feijóo GR (2004) A new method in inverse scattering based on the topological derivative. Inverse Prob 20:1819–1840

    Article  MATH  Google Scholar 

  41. Feng H, Karl WC, Castanon DA (2003) A curve evolution approach to object-based tomographic reconstruction. IEEE Trans Image Process 12:44–57

    Article  MathSciNet  Google Scholar 

  42. Ferrayé R, Dauvignac JY, Pichot C (2003) An inverse scattering method based on contour deformations by means of a level set method using frequency hopping technique. IEEE Trans Antennas Propagat 51:1100–1113

    Article  Google Scholar 

  43. Frühauf F, Scherzer O, Leitao A (2005) Analysis of regularization methods for the solution of ill-posed problems involving discontinuous operators. SIAM J Numer Anal 43:767–786

    Article  MathSciNet  MATH  Google Scholar 

  44. González-Rodriguez P, Kindelan M, Moscoso M, Dorn O (2005) History matching problem in reservoir engineering using the propagation back-propagation method. Inverse Prob 21:565–590

    Article  MATH  Google Scholar 

  45. Guzina BB, Bonnet M (2006) Small-inclusion asymptotic for inverse problems in acoustics. Inverse Prob 22:1761

    Article  MathSciNet  MATH  Google Scholar 

  46. Haber E (2004) A multilevel level-set method for optimizing eigenvalues in shape design problems. J Comput Phys 198:518–534

    Article  MathSciNet  MATH  Google Scholar 

  47. Hackl B (2007) Methods for reliable topology changes for perimeter-regularized geometric inverse problems. SIAM J Numer Anal 45: 2201–2227

    Article  MathSciNet  MATH  Google Scholar 

  48. Harabetian E, Osher S (1998) Regularization of ill-posed problems via the level set approach. SIAM J Appl Math 58:1689–1706

    Article  MathSciNet  MATH  Google Scholar 

  49. Hettlich F (1995) Fréchet derivatives in inverse obstacle scattering. Inverse Prob 11:371–382

    Article  MathSciNet  MATH  Google Scholar 

  50. Hintermüller M, Ring W (2003) A second order shape optimization approach for image segmentation. SIAM J Appl Math 64:442–467

    Article  MathSciNet  MATH  Google Scholar 

  51. Hou S, Solna K, Zhao H (2004) Imaging of location and geometry for extended targets using the response matrix. J Comput Phys 199:317–338

    Article  MathSciNet  MATH  Google Scholar 

  52. Irishina N, Alvarez D, Dorn O, Moscoso M (2010) Structural level set inversion for microwave breast screening. Inverse Prob 26:035015

    Article  MathSciNet  Google Scholar 

  53. Ito K, Kunisch K, Li Z (2001) Level-set approach to an inverse interface problem. Inverse Prob 17:1225–1242

    Article  MathSciNet  MATH  Google Scholar 

  54. Ito K (2002) Level set methods for variational problems and application. In: Desch W, Kappel F, Kunisch K (eds) Control and estimation of distributed parameter systems. Birkhäuser, Basel, pp 203–217

    Google Scholar 

  55. Jacob M, Bresler Y, Toronov V, Zhang X, Webb A (2006) Level set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging. J Biomed Opt 11:064029

    Article  Google Scholar 

  56. Kao CY, Osher S, Yablonovitch E (2005) Maximizing band gaps in two-dimentional photonic crystals by using level set methods. Appl Phys B 81:235–244

    Article  Google Scholar 

  57. Klann E, Ramlau R, Ring W (2008) A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. J Comput Phys 221:539–557

    Google Scholar 

  58. Kortschak B, Brandstätter B (2005) A FEM-BEM approach using level-sets in electrical capacitance tomography. COMPEL 24: 591–605

    MATH  Google Scholar 

  59. Leitão A, Alves MM (2007) On level set type methods for elliptic Cauchy problems. Inverse Prob 23:2207–2222

    Article  MATH  Google Scholar 

  60. Leitao A, Scherzer O (2003) On the relation between constraint regularization, level sets and shape optimization. Inverse Prob 19:L1–L11

    Article  MathSciNet  MATH  Google Scholar 

  61. Lie J, Lysaker M, Tai X (2006) A variant of the level set method and applications to image segmentation. Math Comput 75:1155–1174

    Article  MathSciNet  MATH  Google Scholar 

  62. Lie J, Lysaker M, Tai X (2006) A binary level set method and some applications for Mumford-Shah image segmentation. IEEE Trans Image Process 15:1171–1181

    Article  Google Scholar 

  63. Litman A, Lesselier D, Santosa D (1998) Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set. Inverse Prob 14:685–706

    Article  MathSciNet  MATH  Google Scholar 

  64. Litman A (2005) Reconstruction by level sets of n-ary scattering obstacles. Inverse Prob 21:S131–S152

    Article  MathSciNet  MATH  Google Scholar 

  65. Liu K, Yang X, Liu D et al (2010) Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy. J Opt Soc Am A 27:1413–1423

    Article  Google Scholar 

  66. Lu Z, Robinson BA (2006) Parameter identification using the level set method. Geophys Res Lett 33:L06404

    Article  Google Scholar 

  67. Luo Z, Tong LY, Luo JZ et al (2009) Design of piezoelectric actuators using a multiphase level set method of piecewise constants. J Comput Phys 228:2643–2659

    Article  MathSciNet  MATH  Google Scholar 

  68. Lysaker M, Chan TF, Li H, Tai X-C (2007) Level set method for positron emission tomography. Int J Biomed Imaging 2007:15. doi:10.1155/2007/26950

    Google Scholar 

  69. Masmoudi M, Pommier J, Samet B (2005) The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Prob 21:547–564

    Article  MathSciNet  MATH  Google Scholar 

  70. Mumford D, Shah J (1989) Optimal approximation by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42:577–685

    Article  MathSciNet  MATH  Google Scholar 

  71. Natterer F, Wübbeling F (2001) Mathematical methods in image reconstruction (monographs on mathematical modeling and computation), vol 5. SIAM, Philadelphia

    Book  Google Scholar 

  72. Nielsen LK, Li H, Tai XC, Aanonsen SI, Espedal M (2008) Reservoir description using a binary level set model. Comput Visual Sci 13(1):41–58

    Article  MathSciNet  Google Scholar 

  73. Novotny AA, Feijóo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Meth Appl Mech Eng 192:803–829

    Article  MATH  Google Scholar 

  74. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  75. Osher S, Santosa F (2001) Level set methods for optimisation problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum. J Comput Phys 171: 272–288

    Article  MathSciNet  MATH  Google Scholar 

  76. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer, New York

    MATH  Google Scholar 

  77. Park WK, Lesselier D (2009) Reconstruction of thin electromagnetic inclusions by a level set method. Inverse Prob 25:085010

    Article  MathSciNet  Google Scholar 

  78. Ramananjaona C, Lambert M, Lesselier D, Zolésio J-P (2001) Shape reconstruction of buried obstacles by controlled evolution of a level set: from a min-max formulation to numerical experimentation. Inverse Prob 17:1087–1111

    Article  MATH  Google Scholar 

  79. Ramananjaona C, Lambert M, Lesselier D, Zolésio J-P (2002) On novel developments of controlled evolution of level sets in the field of inverse shape problems. Radio Sci 37:8010

    Article  Google Scholar 

  80. Ramlau R, Ring W (2007) A Mumford-Shah level-set approach for the inversion and segmentation of X-ray tomography data. J Comput Phys 221:539–557

    Article  MathSciNet  MATH  Google Scholar 

  81. Rocha de Faria J, Novotny AA, Feijóo RA, Taroco E (2009) First- and second-order topological sensitivity analysis for inclusions. Inverse Prob Sci Eng 17:665–679

    Article  MATH  Google Scholar 

  82. Santosa F (1996) A level set approach for inverse problems involving obstacles. ESAIM Contr Optim Calc Var 1:17–33

    Article  MathSciNet  MATH  Google Scholar 

  83. Schumacher A, Kobolev VV, Eschenauer HA (1994) Bubble method for topology and shape optimization of structures. J Struct Optim 8:42–51

    Article  Google Scholar 

  84. Schweiger M, Arridge SR, Dorn O, Zacharopoulos A, Kolehmainen V (2006) Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique. Opt Lett 31:471–473

    Article  Google Scholar 

  85. Sethian JA (1999) Level set methods and fast marching methods, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  86. Sokolowski J, Zochowski A (1999) On topological derivative in shape optimization. SIAM J Control Optim 37:1251–1272

    Article  MathSciNet  MATH  Google Scholar 

  87. Sokolowski J, Zolésio J-P (1992) Introduction to shape optimization: shape sensitivity analysis (springer series in computational mathematics), vol 16. Springer, Berlin

    MATH  Google Scholar 

  88. Soleimani M (2007) Level-set method applied to magnetic induction tomography using experimental data. Res Nondestr Eval 18(1): 1–12

    Article  MathSciNet  Google Scholar 

  89. Soleimani M, Lionheart WRB, Dorn O (2005) Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data. Inverse Prob Sci Eng 14:193–210

    Article  Google Scholar 

  90. Soleimani M, Dorn O, Lionheart WRB (2006) A narrowband level set method applied to EIT in brain for cryosurgery monitoring. IEEE Trans Biomed Eng 53:2257–2264

    Article  Google Scholar 

  91. Suri JS, Liu K, Singh S, Laxminarayan SN, Zeng X, Reden L (2002) Shape recovery algorithms using level sets in 2D/3D medical imagery: a state-of-the-art review. IEEE Trans Inf Technol Biomed 6:8–28

    Article  Google Scholar 

  92. Tai X-C, Chan TF (2004) A survey on multiple level set methods with applications for identifying piecewise constant functions. Int J Numer Anal Model 1:25–47

    MathSciNet  MATH  Google Scholar 

  93. van den Doel K et al (2007) Dynamic level set regularization for large distributed parameter estimation problems. Inverse Prob 23: 1271–1288

    Article  MATH  Google Scholar 

  94. Van den Doel K, Ascher UM (2006) On level set regularization for highly ill-posed distributed parameter estimation problems. J Comput Phys 216:707–723

    Article  MathSciNet  MATH  Google Scholar 

  95. Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the Mumford-Shah model. Int J Comput Vision 50:271–293

    Article  MATH  Google Scholar 

  96. Wang M, Wang X (2004) Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Meth Appl Mech Eng 193:469–496

    Article  MATH  Google Scholar 

  97. Wei P, Wang MY (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Eng 78(4): 379–402

    Article  MathSciNet  MATH  Google Scholar 

  98. Ye JC, Bresler Y, Moulin P (2002) A self-referencing level-set method for image reconstruction from sparse Fourier samples. Int J Comput Vision 50:253–270

    Article  MATH  Google Scholar 

  99. Zhao H-K, Chan T, Merriman B, Osher S (1996) A variational level set approach to multiphase motion. J Comput Phys 127:179–195

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

OD thanks Diego Álvarez, Natalia Irishina, Miguel Moscoso and Rossmary Villegas for their collaboration on the exciting topic of level set methods in image reconstruction, and for providing figures which have been included in this chapter. He thanks the Spanish Ministerio de Educacion y Ciencia (Grants FIS2004-22546-E and FIS2007-62673), the European Union (Grant FP6-503259), the French CNRS and Univ. Paris Sud 11, and the Research Councils UK for their support of some of the work which has been presented in this chapter. DL thanks Jean Cea for having introduced him to the fascinating world of shape optimal design, Fadil Santosa for his contribution to his understanding of the linkage between shape optimal design and level set evolutions, and Jean-Paul Zolésio for his precious help on both topics, plus his many insights on topological derivatives.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Dorn, O., Lesselier, D. (2011). Level Set Methods for Structural Inversion and Image Reconstruction. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_10

Download citation

Publish with us

Policies and ethics