Skip to main content

Formation and Transfer of Fatty Acids in Aquatic Microbial Food Webs: Role of Heterotrophic Protists

  • Chapter
  • First Online:
Book cover Lipids in Aquatic Ecosystems

Abstract

The term protist was first coined by Haeckel in 1866 for diverse microorganisms including bacteria (Haeckel 1866). However, in 1925 in a paper on an amoeboid parasite of Daphnia, Chatton (1925) highlighted for the first time the fundamental difference between prokaryotic and eukaryotic organisms and the term protist to be now used to describe unicellular eukaryotes, which do not differentiate into tissues (see Adl et al. 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl, M., Simpson, A., Farmer, M.A., Andersen, R.A., Anderson, O.R., Barta, J.R., Bowser, S.S., Brugerolle, G., Fensome, R.A., Fredericq, S., James, T.Y., Karpov, S., Kugrens, P., Krug, J., Lane, C., Lewis, L., Lodge, J., Lynn, D.H., Mann, D.G., McCourt, R.M., Mendoza, L., Moestrup, O., Mozley-Standridge, S., Nerad, T., Shearer, C.A., Smirnov, A., Speigel, F.W., and Taylor, M.F.J.R. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52:399–451.

    Article  PubMed  Google Scholar 

  • Adolf, J.E., Place, A.R., Stoecker, D.K., and Harding Jr., L.W. 2007a. Modulation of polyunsaturated fatty acids in mixotrophic Karlodinium Veneficum (Dinophyceae) and its prey, Storeatula major (Cryptophyceae). J. Phycol. 43:1259–1270.

    Article  CAS  Google Scholar 

  • Adolf, J.E., Bachvaroff, T.R., Krupatkina, D.N., and Place, A.R. 2007b. Karlotoxin mediates grazing of Oxyrrhis marina on Karlodinium veneficum strains. Harmful Algae 6:400–412.

    Article  CAS  Google Scholar 

  • Ahlgren, G., Lundstedt, L., Brett, M.T., and Forsberg, C. 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 12:809–818.

    Article  CAS  Google Scholar 

  • Arndt, H., Dietrich, D., Auer, B., Cleven, E., Gräfenhan, T., Weitere, M., and Mylnikov, A. 2000. Functional diversity of heterotrophic flagellates in aquatic ecosystems, pp. 240–268. In B.S.C. Leadbeater and J.C. Green (eds.), The flagellates unity, diversity and evolution. Taylor & Francis, London.

    Google Scholar 

  • Arts, M.T., Ackman, R.G., and Holub, B.G. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122–137.

    Article  CAS  Google Scholar 

  • Avery, S.V., Lloyd, D., and Harwood, J. 1994. Changes in membrane fatty acid composition and delta 12-desaturase activity during growth of Acanthamoeba castellanii in batch culture. J. Eukaryot. Microbiol. 41:396–401.

    Article  CAS  Google Scholar 

  • Avery, S.V., Lloyd, D., and Harwood, J. 1995. Temperature dependent changes in the plasma lipid order and the phagocytotic activity of the amoeba Acanthamoeba castellanii are closely correlated. Biochem. J. 312:811–816.

    PubMed  CAS  Google Scholar 

  • Avery, S.V., Harwood, J., Rutter, A.J., Lloyd, D., and Harwood, J. 1996. Oxygen dependent low temperature composition and delta12 desaturase induction and alteration of fatty acid composition in Acanthamoeba castellanii in batch culture. Microbiology 142:2213–2221.

    Article  CAS  Google Scholar 

  • Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A., and Thingstad, F. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257–263.

    Article  Google Scholar 

  • Bec, A., Desvilettes, C., Vera, A., Lemarchand, C., Fontvielle, D., and Bourdier, G. 2003a. Nutritional quality of a freshwater heterotrophic flagellate: trophic upgrading of its microalgal diet for Daphnia. Aquat. Microb. Ecol. 32:203–207.

    Article  Google Scholar 

  • Bec, A., Desvilettes, C., Vera, A., Fontvielle, D., and Bourdier, G. 2003b. Nutritional value of different food sources for the bennthic daphnidae Simocephalus vetulus: role of fatty acids. Arch. Hydrobiol. 156:145–163.

    Article  CAS  Google Scholar 

  • Bec, A., Martin-Creuzburg, D., and Von Elert, E. 2006. Trophic upgrading of autotrophic picoplankton by the heterotrophic flagellate Paraphysomonas sp. Limnol. Oceanogr. 51:1699–1707.

    Article  Google Scholar 

  • Behrouzian, B., Fauconnot, L., Daligault, F., Nugier-Chauvin, C., Patin, H., and Buist, P.H. 2001. Mechanism of fatty acid desaturation in the green alga Chlorella vulgaris. Eur. J. Biochem. 268:3545–3549.

    Article  PubMed  CAS  Google Scholar 

  • Bettarel, Y., Sime-Ngando, T., Amblard, C., and Bouvy, M. 2005. Low consumption of virus-sized particles by heterotrophic nanoflagellates in two lakes of the French Massif Central. Aquat. Microb. Ecol. 39:205–209.

    Article  Google Scholar 

  • Bodyl, A. 2005. Do plastid-related characters support the chromalveolate hypothesis. J. Phycol. 41:712–719.

    Article  Google Scholar 

  • Boëchat, I.G. 2005. Biochemical composition of protists: dependence on diet and trophic mode and consequences for their nutritional quality. Ph.D. Thesis. Humboldt Universität zu Berlin, Berlin. 144 p.

    Google Scholar 

  • Boëchat, I.G. and Adrian, R. 2005. Biochemical composition of algivorous freshwater ciliates: you are not what you eat. FEMS Microbiol. Ecol. 53:393–400.

    Article  PubMed  Google Scholar 

  • Boëchat, I.G., Weithoff, G., Krüger, A., Gücker, B., and Adrian, R. 2007. A biochemical explanation for the success of mixotrophy in the flagellate Ochromonas sp.. Limnol. Oceanogr. 52:1624–1632.

    Article  Google Scholar 

  • Bourdier, G. and Amblard, C. 1987. Evolution de la composition en acides gras du phytoplancton lacustre du (lac Pavin). Int. Revue Ges. Hydrobiol. 11:1201–1212.

    Google Scholar 

  • Brett, M.T. and Müller-Navarra, D.C. 1997. The role of highly unsaturated fatty acids in food web processes. Freshw Biol. 38:483–499.

    Article  CAS  Google Scholar 

  • Broglio, E., Jonasdottir, S.H., Calbet, A., Jakobsen, H.H., and Saiz, E. 2003. Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat. Microb. Ecol. 31:267–278.

    Article  Google Scholar 

  • Brugerolle, G. and Müller, M. 2000. Amitochondriate flagellates, pp. 166–189. In B.S.C. Leadbeater and J.C. Green (eds.), The flagellates. unity, diversity and evolution. Taylor & Francis, London.

    Google Scholar 

  • Burkholder, J.M. and Glasgow, H.B.J. 1997. Pfiesteria piscicida and other Pfiesteria-like dinoflagellates: behavior, impacts, and environmental controls. Limnol. Oceanogr. 42:1052–1075.

    Article  Google Scholar 

  • Calbet, A. and Landry, M.R. 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49:51–57.

    Article  CAS  Google Scholar 

  • Callieri, C. and Stockner, J.G. 2002. Freshwater autotrophic picoplankton: a review. J. Limnol. 61:1–14.

    Google Scholar 

  • Caron, D.A., Goldman, J.C., and Dennett, M.R. 1990. Carbon utilization by the omnivorous flagellate Paraphysomonas imperforata. Limnol. Oceanogr. 35:192–201.

    Article  CAS  Google Scholar 

  • Carrias, J.-F., Quiblier-Lloberas, C., and Bourdier, G. 1998. Seasonal dynamics of free and attached heterotrophic nanoflagellates in an oligomesotrophic lake. Freshw. Biol. 39:91–101.

    Article  Google Scholar 

  • Chatton, E. 1925. Pansporella perplexa, amoebien à spores protégées, parasite des Daphnies. Réflexions sur la biologie et la phylogénie des Protozoaires. Ann. Sci. Nat. Zool. 8:5–84.

    Google Scholar 

  • Dunstan, G.A., Volkman, J.K., Barret, S.M., Leroi, J., and Jeffrey, S.W. 1994. Essential polyunsaturated fatty acids from 14 species of diatom. Phytochemistry 35:155–161.

    Article  CAS  Google Scholar 

  • Desvilettes, C., Bourdier, G., Amblard, C., and Barth, B. 1997. Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoan and microalgae. Freshw. Biol. 38:629–637.

    Article  CAS  Google Scholar 

  • Diez, B., Pedros-Alio, C., and Massana, R. 2001. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 67:2932–2941.

    Article  PubMed  CAS  Google Scholar 

  • Dolan, J.R. 1997. Phosphorus and ammonia excretion by planktonic protists. Mar. Geol. 139:109–122.

    Article  CAS  Google Scholar 

  • Domergue, F., Spiekermann, P., Lerchl, J., Beckmann, C., Kilian, O., Kroth, P., Boland, W., Zähringer, U., and Heinz, E. 2003. New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal delta 12 fatty acid desaturases. Plant Phycol. 131:1648–1660.

    Article  CAS  Google Scholar 

  • Erwin, J.A. 1973. Lipids and biomembranes of eukaryotic microorganisms, pp. 40–143. In J.A. Erwin (ed.), Comparative biochemistry of fatty acids in eukaryotic microorganisms. Academic, New York.

    Google Scholar 

  • Fauré-Fremiet, E. 1924. Contribution à la connaissance des Infusoires planctoniques. Suppl. Bull. Biol. Fr. Bel. 6:171.

    Google Scholar 

  • Fogg, G.E. 1995. Some comments on picoplankton and its importance in the pelagic ecosystem. Aquat. Microb. Ecol. 9:33–39.

    Article  Google Scholar 

  • Gifford, D.J. 1991. The protozoan-metazoan trophic link in pelagic ecosystems. J. Protozool. 38:81–86.

    Google Scholar 

  • Gockel, G. and Hachtel, W. 2000. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351.

    Article  PubMed  CAS  Google Scholar 

  • Haeckel, E. 1866. Generelle Morphologie der Organismen, Allgemeine Anatomie der Organismen Vol. I, Reimer, Berlin.

    Google Scholar 

  • Hashimoto, K., Yoshizawa, A., Saito, K., Yamada, T., and Kanehisa, M. 2006. The repertoire of desaturases for unsaturated fatty acid synthesis in 397 genomes. Genome Inform 17:173–183.

    PubMed  CAS  Google Scholar 

  • Hessen, D. O.1990. Carbon, nitrogen and phosphorus status in Daphnia at varying food conditions. J. Plankton Res. 12:1239–1249.

    Article  CAS  Google Scholar 

  • Johnson, M.D., Oldach, D., Delwiche, C.F., and Stoecker, D.K. 2007. Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445:426–428.

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa, K.T., Yamato, Y., Kohzu, S., Shoji, K., Matsui, Y., Tanaka, Y., and Fukuzawa, H. 2006. A front-end desaturase from Chlamydomonas reinhardtii produces pinolenic and coniferonic acids by ω13 desaturation in methylotrophic yeast and tobacco. Plant.Cell Physiol. 47:64–73.

    Article  PubMed  CAS  Google Scholar 

  • Kaneshiro, E.S. 1980. Positional distribution of fatty acids in the major glycerophospholipids of Paramecium tetraurelia. J. Lipid Res. 21:559–570.

    PubMed  CAS  Google Scholar 

  • Khozin-Goldberg, I., Didi-Cohen, S., Shayakhmetova, I., and Cohen, Z. 2002. Biosynthesis of EPA in the freshwater eustigmatophyte Monodus subterraneus. J. Phycol. 38:745–751.

    Article  CAS  Google Scholar 

  • Klein Breteler, W.C.M., Schogt, N., Baas, M., Schouten, S., and Kraay, G.W. 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar. Biol. 135:191–198.

    Article  Google Scholar 

  • Klein Breteler, W.C.M., Koski, M., and Rampen, S. 2002. Role of essential lipids in copepod nutrition: no evidence for trophic upgrading of food quality by a marine ciliate. Mar. Ecol. Prog. Ser. 274:199–208.

    Article  Google Scholar 

  • Landry, M.R. and Calbet, A. 2004. Microzoplankton production in the oceans. ICES J. Mar. Sci. 61:501–507.

    Article  Google Scholar 

  • Laybourn-Parry, J. and Parry, J. 2000. Flagellates and the microbial loop, pp. 216–239. In B.S.C. Leadbeater and J.C. Green (eds.), The flagellates. unity, diversity and evolution. Taylor & Francis, London.

    Google Scholar 

  • Lefèvre, E., Bardot, C., Noël, C., Carrias, J-F., Viscogliosi, E., Amblard, C., and SimeNgando, T. 2007. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ. Microbiol. 9:61–71.

    Google Scholar 

  • Li, W.K.W., Subba Rao, D.V., Harrison, W.C., Smith, J.C., Cullen, J.J., Irwin, B., and Platt, T. 1983. Autotrophic picoplankton in the tropical ocean. Science 219:292–295.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, M.P., Volkman, J.K., Holdsworth, D.G., Jackson, A.E., and Blackburn, S.I. 1999. Very-long-chain (C28) highly unsaturated fatty acids in marine dinoflagellates. Phytochemistry 50:541–548.

    Article  CAS  Google Scholar 

  • Martin-Creuzburg, D., Bec, A., and Von Elert, E. 2005. Trophic upgrading of picocyanobacterial carbon by ciliates for nutrition of Daphnia magna. Aquat. Microb. Ecol. 41:271–280.

    Article  Google Scholar 

  • Martin-Creuzburg, D., Bec, A., and Von Elert, E. 2006. Supplementation with sterols improves food quality of a ciliate for Daphnia magna. Protist 157:477–486.

    Article  PubMed  CAS  Google Scholar 

  • McManus, G.B. 1991. Flow analysis of a planktonic microbial food web model. Mar. Microb. Food Webs 5:145–160.

    Google Scholar 

  • Metz, J.G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Kathryn Lardizabal, K., Frederic Domergue, F., Yamada, A., Yazawa, K., Knauf, V., and John Browse, J. 2001. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, A., Cirpus, P., Ott, C., Schlecker, R., Zähringer, U., and Heinz, E. 2003. Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a Δ4-fatty acyl group desaturase. Biochemistry 42:9779–9788.

    Article  PubMed  CAS  Google Scholar 

  • Mignot, J-P. 1977. Etude ultrastructurale d’un flagellé du genre SpumellaChrysomonadine leucoplastidié. Protistologica 13:219–231.

    Google Scholar 

  • Nakashima, S., Zhao, Y., and Nozawa, Y. 1996. Molecular cloning of delta 9 fatty acid desaturase from the protozoan Tetrahymena thermophila and its mRNA expression during thermal membrane adaptation. Biochem. J. 317:29–34.

    PubMed  CAS  Google Scholar 

  • Nichols, B.W. and Appleby, R.S. 1969. The distribution and biosynthesis of arachidonic acid in algae. Phytochemistry 8:1907–1915.

    Article  CAS  Google Scholar 

  • Nozawa, Y. and Thompson, G.A. 1979. Lipids and membrane organization in Tetrahymena, pp.276–335. In M. Levandowski and S.H. Hutner (eds.), Biochemistry and Physiology of Protozoa. Academic, New York.

    Google Scholar 

  • Park, J.S., Simpson, A.G.B., Lee, W.J., and Cho, B.C. 2007. Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938). Protist 158:397–413.

    Article  PubMed  CAS  Google Scholar 

  • Parrish, C.C., Whiticar, M., and Puvanendran, V. 2007. Is ω6 docosapentaenoic acid an essential fatty acid during early ontogeny in marine fauna? Limnol. Oceanogr. 53:478–479.

    Google Scholar 

  • Poerschmann, J., Spijkerman, E., and Langer, U. 2004. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb. Ecol. 48:78–89.

    Article  PubMed  CAS  Google Scholar 

  • Pomeroy, L.R. 1974. The ocean’s food web, a changing paradigm. Bioscience. 24:499–504.

    Article  Google Scholar 

  • Ratledge, C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815.

    Article  PubMed  CAS  Google Scholar 

  • Riekhof, W.R., Sears, B.B., and Benning, C. 2005. Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase. Eukaryot. Cell. 4:242–252.

    Article  PubMed  CAS  Google Scholar 

  • Rivkin, R.B. and Legendre, L. 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291:2398–2400.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Puerta, M.V., Lippmeier, J.C., Apt, K.E., and Delwiche, C.F. 2007. Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, R.W. and Wickham, S.A. 1993. Planktonic protozoa and metazoa: predation, food quality and population control. Mar. Microb. Food Webs 7:197–223.

    Google Scholar 

  • Sanders, R.W., Williamson, C.E., Stutsman, P.L., Moeller, R.E., Goulden, C.E., and Aoki-Goldsmith, R. 1996. Reproductive success of “herbivorous” zooplankton fed algal and non algal food resources. Limnol. Oceanogr. 41:1295–1305.

    Article  Google Scholar 

  • Sargent, J.R., Bell, M.V., and Henderson, R.J. 1995. Protists as sources of (n-3) polyunsaturated fatty acids for vertebrate development, pp. 54–64. In G. Brugerolle and J. P. Mignot (eds.), Protistological actualities. Proceedings of the 2nd European Conference on Protistology and the 8th European Conference on Ciliate Biology, Aubiere Cedex, France.

    Google Scholar 

  • Sayanova, O., Haslam, R., Guschina, I., Lloyd, D., Christie, W.W., Harwood, J.L., and Napier, J.A. 2006. A bifunctional ∆z12, ∆15 desaturase from Acanthamoeba castellanii directs the synthesis of highly unusual n-1 series unsaturated fatty acids. J. Biol. Biochem. 281:36533–36541.

    CAS  Google Scholar 

  • Scott, F.J., Davidson, A.T., and MArchant, H.J. 2001. Grazing by the antarctic sea ice ciliate Pseudocohnolembus. Polar Biol. 24:127–131.

    Article  Google Scholar 

  • Sekiguchi, H., Moriya, M., Nakayama, T., and Inouye, I. 2001. Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae).aProtist153:157–167.

    Article  Google Scholar 

  • Sherr, E.B. and Sherr, B.F. 1988. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. 33:225–1227.

    Article  Google Scholar 

  • Sherr, E.B. and Sherr, B.F. 2002. Significance of predation by protists in aquatic microbial food webs. Anton. Leeuw. Int. J. G. 81:293–308.

    Article  CAS  Google Scholar 

  • Sherr, E.B. and Sherr, B.F. 2007. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 352:187–197.

    Article  Google Scholar 

  • Sherr, E.B., Sherr, B.F., and Paffenhöffer, G.A. 1986. Phagotrophic protozoa as food for metazoans: a ‘missing’ trophic link in marine pelagic food webs? Mar. Microb. Food Webs 1:61–80.

    Google Scholar 

  • Sherr, B.F., Sherr, E.B., and Albright, L.J. 1987. Bacteria: link or sink? Science 235:88–89.

    Article  Google Scholar 

  • Stockner, J.G. and Antia, N.J. 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43:2472–2503.

    Article  Google Scholar 

  • Stockner, J.G. and Shortreed, K.S. 1989. Algal picoplancton production and contribution to food webs in oligotrophic British Columbia lakes. Hydrobiologia 173:151–166.

    Article  CAS  Google Scholar 

  • Stoecker, D.K. 1998. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur. J. Protistol. 34:281–290.

    Google Scholar 

  • Stoecker, D.K. and McDowell Capuzzo, J. 1990. Predation on protozoa: its importance to zooplankton. J. Plankton Res. 12:891–908.

    Article  Google Scholar 

  • Straile, D. 1997. Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group. Limnol. Oceanogr. 42:1375–1385.

    Article  Google Scholar 

  • Sul, D. and Erwin, J.A. 1997. The membrane lipids of the marine ciliated protozoan Parauronema acutum. Biochim. Biophys. Acta 1345:162–171.

    PubMed  CAS  Google Scholar 

  • Tonon, T., Harvey, D., Larson, T.R., and Graham, I.A. 2003. Identification of a very long chain polyunsaturated fatty acid ∆4-desaturase from the microalga Pavlova lutheri. FEBS Lett. 553:440–450.

    Article  PubMed  CAS  Google Scholar 

  • Tripodi, K., Buttigliero, L., Altabe, S., and Uttaro, A. 2005. Functional characterization of front-end desaturase from trypanosomatids depicts the first PUFA biosynthetic pathway from a parasitic protozoan. FEBS Lett. 273:271–280.

    Google Scholar 

  • Van Pelt , C.K., Huang , M.C., Tschanz , C.L., and Brenna , J.T . 1999. An octaene fatty acid, 4,7,10,13,16,19,22,25-octacosaoctaenoic acid (28:8n-3) found in marine oils. J. Lipid Res. 40:1501–1505.

    PubMed  CAS  Google Scholar 

  • Veloza, A.J., Chu, F-L.E., and Tang, K.W. 2006. Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Mar. Biol. 148:779–788.

    Article  CAS  Google Scholar 

  • Venegas-Calerón , M., Beaudoin, F., Sayanova, O., and Napier, J.A. 2007. Co-transcribed genes for long chain polyunsaturated fatty acid biosynthesis in the protozoon Perkinsus marinus include a plant-like FAE1 3-ketoacyl coenzyme A synthase. Biol. Chem. 282:2996–3003.

    Google Scholar 

  • Vera, A., Desvilettes, C., Bec, A., and Bourdier, G. 2001. Fatty acid composition of freshwater heterotrophic flagellates: an experimental study. Aquat. Microb. Ecol. 25:271–279.

    Article  Google Scholar 

  • Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G.I., and Garland, C.D. 1989. Fatty acid and lipid composition of 10 species of microalgae used in aquaculture. J. Exp. Mar. Biol. Ecol. 128:219–240.

    Article  CAS  Google Scholar 

  • Vørs, N., Buck, K.R., Chavez, F.P., Eikrem, W., Hansen, L., Østergaard, J.B., and Thomsen, H. 1995. Nanoplankton of the equatorial Pacific with emphasis on the heterotrophic protists. Deep-Sea Res. II 42:585–602.

    Article  Google Scholar 

  • Wallis, J.G. and Browse, J. 1999. The Δ8 desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Archiv. Biochem. Biophys. 365:307–316.

    Article  CAS  Google Scholar 

  • Weisse, T. 1993. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Adv. Microb. Ecol. 13:327–369.

    Google Scholar 

  • Wieltschnig, C., Kirschner, A.K.T., Steitz, A., and Velimirov, B. 2001. Weak coupling between heterotrophic nanoflagellates and bacteria in a eutrophic freshwater environment. Microb. Ecol. 42:159–167.

    PubMed  CAS  Google Scholar 

  • Zhukova, N.V. and Kharlamenko, V.I. 1999. Sources of essential fatty acids in the marine microbial loop. Aquat. Microb. Ecol. 17:153–157.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor Gilles Bourdier for having invited us (some years ago) to collaborate on his research project. We thank Diane Stoecker, Evelyn and Barry Sherr for having provided useful information and many answers. We are grateful to Dr. Keith Joblin (AgResearch Ltd., Hamilton N.Z.) for his help in improving the text from a linguistic perspective.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Desvilettes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Desvilettes, C., Bec, A. (2009). Formation and Transfer of Fatty Acids in Aquatic Microbial Food Webs: Role of Heterotrophic Protists. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89366-2_2

Download citation

Publish with us

Policies and ethics