Skip to main content

Lipids in marine copepods: latitudinal characteristics and perspective to global warming

  • Chapter
  • First Online:

Abstract

Marine zooplankton represent a very diverse group in the world’s oceans, with numerous taxa of high abundance and biomass. Many of these zooplankton species, especially the dominating copepods, are able to accumulate large reserves of energy-rich lipids, exhibiting some of the highest lipid levels in organisms on earth. Their unusual way to store these lipids, namely as wax esters, is another particularity of many zooplankton species. It is generally accepted that wax esters serve as long-term metabolic reserves, whereas triacylglycerols are utilized for short-term demands, although the physiological advantage of wax esters as long-term deposits over triacylglycerols is still unclear. The geographical distribution of wax esters in marine zooplankton was first studied in detail by Lee and co-authors in the 1970s (Lee et al. 1971; Lee and Hirota 1973). They showed that especially herbivorous calanoid copepods from habitats with a marked seasonality intensely synthesize wax esters, which in many herbivorous species consist, to a large degree, of specific long-chain monounsaturated fatty acids (MUFA) and alcohols (reviewed by Sargent and Henderson 1986; Dalsgaard et al. 2003; Lee et al. 2006).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackman, R.G., Tocher, C.S., and McLachlan, J. 1968. Marine phytoplankter fatty acids. J. Fish. Res. Board Can. 25:1603–1620.

    CAS  Google Scholar 

  • Albers, C.S., Kattner, G., and Hagen, W. 1996. The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Mar. Chem. 55:347–358.

    Article  CAS  Google Scholar 

  • Arts, M.T., Ackman, R.G., and Holub, B.J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122–137.

    Article  CAS  Google Scholar 

  • Atkinson, A., Siegel, V., Pakhomov, E., and Rothery, P. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103.

    Article  PubMed  CAS  Google Scholar 

  • Auel, H., and Hagen, W. 2002. Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean. Mar. Biol. 140:1013–1021.

    Article  Google Scholar 

  • Båmstedt, U., and Tande, K. 1988. Physiological responses of Calanus finmarchicus and Metridia longa (Copepoda: Calanoida) during winter–spring transition. Mar. Biol. 99:31–38.

    Article  Google Scholar 

  • Bradford-Grieve, J.M., Markhaseva, E.L., Rocha, C.E.F., and Abiahy, B. 1999. Copepoda, pp. 869–1098. In D. Boltovskoy (ed.), South Atlantic Zooplankton, Vol. 2. Backhuys, Leyden.

    Google Scholar 

  • Campbell, R.W., and Dower, J.F. 2003. Role of lipids in the maintenance of neutral buoyancy by zooplankton. Mar. Ecol. Prog. Ser. 263:93–99.

    Article  CAS  Google Scholar 

  • Conover, R.J., and Huntley, M. 1991. Copepods in ice-covered seas – distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas. J. Mar. Syst. 2:1–41.

    Article  Google Scholar 

  • Conover, R.J., and Siferd, T.D. 1993. Dark-season survival strategies of coastal zone zooplankton in the Canadian Arctic. Arctic 46:303–311.

    Google Scholar 

  • Cornils, A., Schnack-Schiel, S.B., Böer, M., Graeve, M., Struck, U., Al-Najjar, T., and Richter, C. 2007. Feeding of Clausocalanids (Calanoida, Copepoda) on naturally occurring particles in the northern Gulf of Aqaba (Red Sea). Mar. Biol. 151:1261–1274.

    Article  Google Scholar 

  • Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D.C., and Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46:225–340.

    Article  PubMed  Google Scholar 

  • Dittmar, T., and Kattner, G. 2003. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar. Chem. 83:103–120.

    Article  CAS  Google Scholar 

  • Falk-Petersen, S., Sargent, J.R., and Tande, K.S. 1987. Lipid composition of zooplankton in relation to the sub-Arctic food web. Polar Biol. 8:115–120.

    Article  CAS  Google Scholar 

  • Falk-Petersen, S., Hop, H., Budgell, W.P., Hegseth, E.N., Korsnes, R., Loyning, T.B., Ørbaek, J.B., Kawamura, T., and Shirasawa, K. 2000. Physical and ecological processes in the Marginal Ice Zone of the northern Barents Sea during the summer melt periods. J. Mar. Syst. 27:131–159.

    Article  Google Scholar 

  • Falk-Petersen, S., Timofeev, S., Pavlov, V., and Sargent, J.R. 2007. Climate variability and the possible effects on Arctic food chains. The role of Calanus, pp. 147–166. In J.B. Orbaek, T. Tombre, R. Kallenborn, E. Hegseth, S. Falk-Petersen, and A.H. Hoel (eds.), Arctic-Alpine Ecosystems and People in a Changing Environment. Springer, Berlin.

    Chapter  Google Scholar 

  • Farkas, T. 1979. Adaptation of fatty acid compositions to temperature – a study on planktonic crustaceans. Comp. Biochem. Physiol. 64B:71–76.

    CAS  Google Scholar 

  • Flato, G.M., Boer, G.J., Lee, W.G., McFarlane, N.A., Ramsden, D., Reader, M.C., and Weaver, A.J. 2000. The Canadian centre for climate modelling and analysis global coupled model and its climate. Climate Dyn. 16:451–467.

    Article  Google Scholar 

  • Fraser, A.J., Sargent, J.R., and Gamble, J.C. 1989. Lipid class and fatty acid composition of Calanus finmarchicus (Gunnerus), Pseudocalanus sp. and Temora longicornis Müller from a nutrient-enriched seawater enclosure. J. Exp. Mar. Biol. Ecol. 130:81–92.

    Article  CAS  Google Scholar 

  • Gatten, R.R., Corner, E.D.S., Kilvington, C.C., and Sargent, J.R. 1979. A seasonal survey of the lipids of Calanus helgolandicus Claus from the English channel, pp. 275–284. In E. Naylor, and R.G. Hartnoll (eds.), Cyclic Phenomena in Plants and Animals. Pergamon, Oxford.

    Google Scholar 

  • Gradinger, R. 1995. Climate change and biological oceanography of the Arctic Ocean. Phil. Trans. R. Soc. Lond. A 352:277–286.

    Article  Google Scholar 

  • Graeve, M., Albers, C., and Kattner, G. 2005. Assimilation and biosynthesis of lipids in Arctic Calanus species based on 13C feeding experiments with a diatom. J. Exp. Mar. Biol. Ecol. 317:109–125.

    Article  CAS  Google Scholar 

  • Graeve, M., Kattner, G., and Hagen, W. 1994a. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: experimental evidence of trophic markers. J. Exp. Mar. Biol. Ecol. 182:97–110.

    Article  CAS  Google Scholar 

  • Graeve, M., Hagen, W., and Kattner, G. 1994b. Herbivorous or omnivorous? On the significance of lipid compositions as trophic markers in Antarctic copepods. Deep-Sea Res. 41:915–924.

    Article  Google Scholar 

  • Hagen, W., and Auel, H. 2001. Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology 104:313–326.

    Article  PubMed  CAS  Google Scholar 

  • Hagen, W., Kattner, G., and Graeve, M. 1993. Calanoides acutus and Calanus propinquus, Antarctic copepods with different lipid storage modes via wax esters or triacylglycerols. Mar. Ecol. Prog. Ser. 97:135–142.

    Article  CAS  Google Scholar 

  • Hagen, W., Kattner, G., and Graeve, M. 1995. On the lipid biochemistry of polar copepods: compositional differences in the Antarctic calanoids Euchaeta antarctica and Euchirella rostromagna. Mar. Biol. 123:451–457.

    Article  CAS  Google Scholar 

  • Hagen, W., Van Vleet, E.S., and Kattner, G. 1996. Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar. Ecol. Prog. Ser. 134:85–89.

    Article  CAS  Google Scholar 

  • Hagen, W., Kattner, G., Terbrüggen, A., and Van Vleet, E.S. 2001. Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar. Biol. 139:95–104.

    Article  CAS  Google Scholar 

  • Hall, J.M., Parrish, C.C., and Thompson, R.J. 2002. Eicosapentaenoic acid regulates Scallop (Placopecten magellanicus) membrane fluidity in response to cold. Biol. Bull. 2002:201–203.

    Article  Google Scholar 

  • Hansen, A.S., Nielsen, T.G., Levinsen, H., Madsen, S.D., Thingstad, T.F., and Hansen, B.W. 2003. Impact of changing ice cover on pelagic productivity and foodweb structure in Disko Bay, West Greenland: a dynamic model approach. Deep-Sea Res. I 50:171–187.

    Article  Google Scholar 

  • Harrington, G.W., Beach, D.H., Dunham, J.E., and Holz, G.G. 1970. The polyunsaturated fatty acids of dinoflagellates. J. Protozool. 17:213–219.

    PubMed  CAS  Google Scholar 

  • Heath, M.R., Boyle, P., Gislason, A., Gurney, W., Hay, S.J., Head, E., Holmes, S., Ingvarsdóttir, A., Jónasdóttir, S.H., Lindeque, P., Pollard, R., Rasmussen, J., Richards, K., Richardson, K., Smerdon, G., and Speirs, D. 2004. Comparative ecology of over-wintering Calanus finmarchicus in the northern North Atlantic, and implications for life-cycle patterns. ICES J. Mar. Sci. 61:698–708.

    Article  Google Scholar 

  • Hirche, H.-J. 1987. Temperature and plankton II. Effect on respiration and swimming activity in copepods from the Greenland Sea. Mar. Biol. 94:347–356.

    Article  Google Scholar 

  • Hirche, H.-J. 1989. Spatial distribution of digestive enzyme activities of Calanus finmarchicus and C. hyperboreus in Fram Strait/Greenland Sea. J. Plankton Res. 11:431–443.

    Article  Google Scholar 

  • Hirche, H.-J. 1996. The reproductive biology of the marine copepod Calanus finmarchicus – a review. Ophelia 44:111–128.

    Google Scholar 

  • Hopkins, T.L., and Torres, J.J. 1989. Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea. Deep-Sea Res. 36:543–560.

    Article  Google Scholar 

  • Hopkins, C.C.E., Tande, K.S., Grønvik, S., and Sargent, J.R. 1984. Ecological investigations of the zooplankton community of Balsfjorden, northern Norway: an analysis of growth and overwintering tactics in relation to niche and environment in Metridia longa (Lubbock), Calanus finmarchicus (Gunnerus), Thysanoessa inermis (Krøyer) and Thysanoessa raschi (M. Sars). J. Exp. Mar. Biol. Ecol. 82:77–99.

    Article  Google Scholar 

  • Jónasdóttir, S.H. 1999. Lipid content of Calanus finmarchicus during overwintering in the Faroe-Shetland channel. Fish. Oceanogr. 8 (suppl. 1):61–72.

    Article  Google Scholar 

  • Kattner, G. 1989. Lipid composition of Calanus finmarchicus from the North Sea and the Arctic. A comparative study. Comp. Biochem. Physiol. 94B:185–188.

    CAS  Google Scholar 

  • Kattner, G., and Krause, M. 1987. Changes in lipids during the development of Calanus finmarchius s.l. from Copepodid I to adult. Mar. Biol. 96:511–518.

    Article  CAS  Google Scholar 

  • Kattner, G., and Krause, M. 1989. Seasonal variations of lipids (wax esters, fatty acids and alcohols) in calanoid copepods from the North Sea. Mar. Chem. 26:261–275.

    Article  CAS  Google Scholar 

  • Kattner, G., and Graeve, M. 1991. Wax ester composition of dominant calanoid copepods of the Greenland Sea/Fram Strait region. Polar Res. 10:479–487.

    Article  Google Scholar 

  • Kattner, G., and Hagen, W. 1995. Polar herbivorous copepods – different pathways in lipid biosynthesis. ICES J. Mar. Sci. 52:329–335.

    Article  Google Scholar 

  • Kattner, G., Krause, M., and Trahms, J. 1981. Lipid composition of some typical North Sea copepods. Mar. Ecol. Prog. Ser. 4:69–74.

    Article  CAS  Google Scholar 

  • Kattner, G., Gercken, G., and Eberlein, K. 1983. Development of lipids during a spring plankton bloom in the northern North Sea. I. Particulate fatty acids. Mar. Chem. 14:149–162.

    Article  CAS  Google Scholar 

  • Kattner, G., Hirche, H.-J., and Krause, M. 1989. Spatial variability in lipid composition of calanoid copepods from Fram Strait, the Arctic. Mar. Biol. 102:473–480.

    Article  CAS  Google Scholar 

  • Kattner, G., Graeve, M., and Hagen, W. 1994. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar. Biol. 118:637–644.

    Article  CAS  Google Scholar 

  • Kattner, G., Hagen, W., Falk-Petersen, S., Sargent, J.R., and Henderson, R.J. 1996. Antarctic krill Thysanoessa macrura fills a major gap in marine lipogenic pathways. Mar. Ecol. Prog. Ser. 134:295–298.

    Article  Google Scholar 

  • Kattner, G., Hagen, W., Graeve, M., and Albers, C. 1998. Exceptional lipids and fatty acids in the pteropod Clione limacina (Gastropoda) from both polar oceans. Mar. Chem. 61:219–228.

    Article  CAS  Google Scholar 

  • Kattner, G., Albers, C., Graeve, M., and Schnack-Schiel, S.B. 2003. Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: indication on feeding modes. Polar Biol. 26:666–671.

    Article  Google Scholar 

  • Kattner, G., Hagen, W., Lee, R.F., Campbell, R., Deibel, D., Falk-Petersen, S., Graeve, M., Hansen, B.W., Hirche, H.J., Jónasdóttir, S.H., Madsen, M.L., Mayzaud, P., Müller-Navarra, D.C., Nichols, P.D., Paffenhöfer, G.-A., Pond, D., Saito, H., Stübing, D., and Virtue, P. 2007. Perspectives on marine zooplankton lipids. Can. J. Fish. Aquat. Sci. 64:1628–1639.

    Article  CAS  Google Scholar 

  • Laakmann, S. 2004. Abundanz und Reproduktionserfolg ausgewählter calanoider Copepoden während der Frühjahrsplanktonblüte um Helgoland. M.Sc. thesis, University of Bremen, pp. 75.

    Google Scholar 

  • Lee, R.F. 1974. Lipid composition of the copepod Calanus hyperboreus from the Arctic Ocean. Changes with depth and season. Mar. Biol. 26:313–318.

    Article  CAS  Google Scholar 

  • Lee, R.F. 1975. Lipids of Arctic zooplankton. Comp. Biochem. Physiol. 51B:263–266.

    Google Scholar 

  • Lee, R.F., and Hirota, J. 1973. Wax esters in tropical zooplankton and nekton and the geographical distribution of wax esters in marine copepods. Limnol. Oceanogr. 18:227–239.

    Article  CAS  Google Scholar 

  • Lee, R.F., Hirota, J., and Barnett, A.M. 1971. Distribution and importance of wax esters in marine copepods and other zooplankton. Deep-Sea Res. 18:1147–1165.

    CAS  Google Scholar 

  • Lee, R.F., Nevenzel, J.C., and Paffenhöfer, G.-A. 1972. The presence of wax esters in marine planktonic copepods. Naturwissenschaften 59:406–411.

    Article  CAS  Google Scholar 

  • Lee, R.F., Nevenzel, J.C., and Lewis, A.G. 1974. Lipid changes during life cycle of marine copepod Euchaeta japonica Marukawa. Lipids 9:891–898.

    Article  CAS  Google Scholar 

  • Lee, R.F., Hagen, W., and Kattner, G. 2006. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307:273–306.

    Article  CAS  Google Scholar 

  • Lischka, S., and Hagen, W. 2005. Life histories of the copepods Pseudocalanus minutus, P. acuspes (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol. 28:910–921.

    Article  Google Scholar 

  • Lischka, S., and Hagen, W. 2007. Seasonal lipid dynamics of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Mar. Biol. 150:445–454.

    Google Scholar 

  • Loeb, V., Siegel, V., Holm-Hansen, O., Hewitt, R., Fraser, W., Trivelpiece, W., and Trivelpiece, S. 1997. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900.

    Article  CAS  Google Scholar 

  • Mauchline, J. 1998. The biology of calanoid copepods. Adv. Mar. Biol. 33:1–660.

    Article  Google Scholar 

  • Mayor, D., Anderson, T., Irigoien, X., and Harris, R. 2006. Feeding and reproduction of Calanus finmarchicus during non-bloom conditions in the Irminger Sea. J. Plankton Res. 28:1167–1179.

    Article  Google Scholar 

  • Metz, C. 1995. Seasonal variation in the distribution and abundance of Oithona and Oncaea species (Copepoda, Crustacea) in the southeastern Weddell Sea, Antarctica. Polar Biol. 15:187–194.

    Article  Google Scholar 

  • Miller, C.B. 1993. Pelagic production processes in the Subarctic Pacific. Prog. Oceanogr. 32:1–15.

    Article  Google Scholar 

  • Mumm, N. 1993. Composition and distribution of mesozooplankton in the Nansen Basin, Arctic Ocean, during summer. Polar Biol. 13:451–461.

    Article  Google Scholar 

  • Norrbin, M.E., Olsen, R.-E., and Tande, K.S. 1990. Seasonal variation in lipid class and fatty acid composition of two small copepods in Balsfjorden, northern Norway. Mar. Biol. 105:205–211.

    Article  CAS  Google Scholar 

  • Paffenhöfer, G.-A. 1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). J. Plankton Res. 15:37–55.

    Article  Google Scholar 

  • Peters, J., Renz, J., van Beusekom, J., Boersma, M., and Hagen, W. 2006. Trophodynamics and seasonal cycle of the copepod Pseudocalanus acuspes in the central Baltic Sea (Bornholm Basin): evidence from lipid composition. Mar. Biol. 149:1417–1429.

    Article  CAS  Google Scholar 

  • Peters, J., Dutz, J., and Hagen, W. 2007. Role of essential fatty acids on the reproductive success of the copepod Temora longicornis in the North Sea. Mar. Ecol. Prog. Ser. 341:153–163.

    Article  CAS  Google Scholar 

  • Petersen, W. 1998. Life cycle strategies in coastal upwelling zones. J. Mar. Syst. 15:313–326.

    Article  Google Scholar 

  • Richardson, A.J., and Schoeman, D.S. 2004. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305:1609–1613.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, K., Jónasdóttir, S.H., Hay, S.J., and Christoffersen, A. 1999. Calanus finmarchicus egg production and food availability in the Faroe-Shetland Channel and northern North Sea: October-March. Fish. Oceanogr. 8:153–162.

    Article  Google Scholar 

  • Richter, C. 1994. Regional and seasonal variability in the vertical distribution of mesozooplankton in the Greenland Sea. Rep. Polar Res. 154:1–87.

    Google Scholar 

  • Runge, J.A., Therriault, J., Legendre, L., Ingram, R.G., and Demers, S. 1991. Coupling between ice microalgal productivity and the pelagic, metazoan food web in the southeastern Hudson Bay: a synthesis of results. Polar Res. 10:325–338.

    Article  Google Scholar 

  • Saito, H., and Kotani, Y. 2000. Lipids of four boreal species of calanoid copepods: origin of monoene fats of marine animals at higher trophic levels in the grazing food chain in the subarctic ocean ecosystem. Mar. Chem. 71:69–82.

    Article  CAS  Google Scholar 

  • Sargent, J.R., and Henderson, R.J. 1986. Lipids, pp. 59–108. In E.D.S. Corner and S.C.M. O’Hara (eds.), The Biological Chemistry of Marine Copepods. Clarendon, Oxford.

    Google Scholar 

  • Sargent, J.R., Eilertsen, H.C., Falk-Petersen, S., and Taasen, J.P. 1985. Carbon assimilation and lipid production in phytoplankton in northern Norwegian fjords. Mar. Biol. 85:109–116.

    Article  CAS  Google Scholar 

  • Sakshaug, E. 1997. Biomass and productivity distributions and their variability in the Barents Sea. ICES J. Mar. Sci. 54:341–351.

    Article  Google Scholar 

  • Schnack, S.B., Marschall, S., and Mizdalski, E. 1985. On the distribution of copepods and larvae of Euphausia superba in Antarctic waters during February 1982. Meeresforschung 30:251–263.

    Google Scholar 

  • Schnack-Schiel, S.B., and Hagen, W. 1995. Life-cycle strategies of Calanoides acutus, Calanus propinquus and Metridia gerlachei (Copepoda: Calanoida) in the eastern Weddell Sea, Antarctica. ICES J. Mar. Sci. 52:541–548.

    Article  Google Scholar 

  • Scott, C.L., Kwasniewski, S., Falk-Petersen, S., and Sargent, J.R. 2002. Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. finmarchicus from Arctic waters. Mar. Ecol. Prog. Ser. 235:127–134.

    Article  CAS  Google Scholar 

  • Serreze, M.C., Holland, M., and Stroeve, J. 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536.

    Article  PubMed  CAS  Google Scholar 

  • Sewell, R.B.S. 1947. The free-swimming planktonic copepods. Systematic account. Sci. Rep. John Murray Exped. 1933–1934. Br. Mus. Nat. Hist. 8:1–303.

    Google Scholar 

  • Shinitzky, M. 1984. Physiology of membrane fluidity. Vol. I, II. CRC Inc., Boca Raton

    Google Scholar 

  • Siegel, V. 2005. Distribution and population dynamics of Euphausia superba: Summary of recent findings. Polar Biol. 29:1–22.

    Article  Google Scholar 

  • Smetacek, V., and Nicol, S. 2005. Polar ocean ecosystems in a changing world. Nature 437:362–368.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S.L., and Schnack-Schiel, S.B. 1990. Polar zooplankton, pp. 527–598. In W.O. Smith (ed.), Polar Oceanography, Part B: Chemistry, Biology, and Geology. Academic, San Diego.

    Google Scholar 

  • Stillwell, W., and Wassall, S.R. 2003. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem. Phys. Lipids 126:1–27.

    Article  PubMed  CAS  Google Scholar 

  • Verheye, H.M., Hagen, W., Auel, H., Ekau, W., Loick, N., Rheenen, I., Wencke, P., and Jones, S. 2005. Life strategies, energetics and growth characteristics of Calanoides carinatus (Copepoda) in the Angola-Benguela Front region. African J. Mar. Sci. 27:641–652.

    Article  Google Scholar 

  • Visser, A.W, and Jónasdóttir, S.H. 1999. Lipids, buoyancy and the seasonal vertical migration of Calanus finmarchicus. Fish. Oceanogr. 8:100–106.

    Article  Google Scholar 

  • Ward, P., Shreeve, R.S., and Cripps, G.C. 1996. Rhincalanus gigas and Calanus simillimus: Lipid storage patterns of two species of copepod in the seasonally ice free zone of the Southern Ocean. J. Plankton Res. 18:1439–1454.

    Article  Google Scholar 

  • Wu, P., Wood, R., and Stott, P. 2005. Human influence on increasing Arctic river discharges. Geophys. Res. Lett. 32:L02703.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Sigrid Schnack-Schiel for her constructive support and her expertise in copepod biology. We thank Martin Graeve for helpful comments and sharing unpublished lipid data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Kattner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kattner, G., Hagen, W. (2009). Lipids in marine copepods: latitudinal characteristics and perspective to global warming. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89366-2_11

Download citation

Publish with us

Policies and ethics