Skip to main content

Noise

  • Chapter
  • First Online:
Mathematical Foundations of Neuroscience

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 35))

  • 7269 Accesses

Abstract

Neurons live in a noisy environment; that is, they are subjected to many sources of noise. For example, we treat ion channels deterministically, but in reality, opening and closing of channels is a probablistic event. Similarly, there is spontaneous release of neurotransmitter which leads to random bombardment of small depolarizations and hyperpolarizations. In vivo, there is increasing evidence that cortical neurons live in a high-conductance state due to the asynchronous firing of the cells which are presynaptic to them. Noise in neural and other excitable systems has been the subject of research since the early 1960s. There are a number of good books and reviews about the subject. We single out the extensive review [179] and the books [274, 169].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Brunel and S. Sergi. Firing frequency of leaky intergrate-and-fire neurons with synaptic current dynamics. J. Theor. Biol., 195:87–95, 1998.

    Article  Google Scholar 

  2. N. Brunel, F. S. Chance, N. Fourcaud, and L. F. Abbott. Effects of synaptic noise and filtering on the frequency response of spiking neurons. Phys. Rev. Lett., 86:2186–2189, 2001.

    Article  Google Scholar 

  3. C. C. Chow and J. A. White. Spontaneous action potentials due to channel fluctuations. Biophys. J., 71:3013–3021, 1996.

    Article  Google Scholar 

  4. G. B. Ermentrout, R. F. Galán, and N. N. Urban. Reliability, synchrony and noise. Trends Neurosci., 31:428–434, 2008.

    Article  Google Scholar 

  5. A. A. Faisal, L. P. Selen, and D. M. Wolpert. Noise in the nervous system. Nat. Rev. Neurosci., 9:292–303, 2008.

    Article  Google Scholar 

  6. C. P. Fall, E. S. Marland, J. M. Wagner, and J. J. Tyson, editors. Computational Cell Biology, volume 20 of Interdisciplinary Applied Mathematics. Springer, New York, 2002.

    MATH  Google Scholar 

  7. N. Fourcaud and N. Brunel. Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput., 14:2057–2110, 2002.

    Article  MATH  Google Scholar 

  8. R. F. Fox and Y. n. Lu. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 49:3421–3431, 1994.

    Article  Google Scholar 

  9. C. W. Gardiner. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, volume 13 of Springer Series in Synergetics. Springer, Berlin, third edition, 2004.

    MATH  Google Scholar 

  10. W. Gerstner and W. M. Kistler. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge, 2002.

    Book  MATH  Google Scholar 

  11. P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations, volume 23 of Applications of Mathematics (New York). Springer, Berlin, 1992.

    MATH  Google Scholar 

  12. C. Laing and G. Lord. Stochastic Methods in Neuroscience. Oxford University Press, Oxford, 2009.

    Book  Google Scholar 

  13. B. Lindner. Interspike interval statistics of neurons driven by colored noise. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 69:022901, 2004.

    Article  Google Scholar 

  14. B. Lindner and L. Schimansky-Geier. Transmission of noise coded versus additive signals through a neuronal ensemble. Phys. Rev. Lett., 86:2934–2937, 2001.

    Article  Google Scholar 

  15. B. Lindner, A. Longtin, and A. Bulsara. Analytic expressions for rate and CV of a type I neuron driven by white gaussian noise. Neural Comput., 15:1760–1787, 2003.

    Article  Google Scholar 

  16. B. Pfeuty, G. Mato, D. Golomb, and D. Hansel. Electrical synapses and synchrony: the role of intrinsic currents. J. Neurosci., 23:6280–6294, 2003.

    Google Scholar 

  17. J. Ritt. Evaluation of entrainment of a nonlinear neural oscillator to white noise. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 68:041915, Oct 2003.

    Article  MathSciNet  Google Scholar 

  18. R. Rodriguez and H. C. Tuckwell. Statistical properties of stochastic nonlinear dynamical models of single spiking neurons and neural networks. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 54:5585–5590, 1996.

    Article  Google Scholar 

  19. M. Rudolph and A. Destexhe. Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural Comput., 15:2577–2618, 2003.

    Article  MATH  Google Scholar 

  20. M. Rudolph and A. Destexhe. On the use of analytical expressions for the voltage distribution to analyze intracellular recordings. Neural Comput., 18:2917–2922, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Sigeti and W. Horsthemke. Pseudo-regular oscillations induced by external noise. J. Stat. Physics, 54:1217–1222, 1989.

    Article  MathSciNet  Google Scholar 

  22. W. R. Softky and C. Koch. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci., 13:334–350, 1993.

    Google Scholar 

  23. S. Tanabe and K. Pakdaman. Dynamics of moments of FitzHugh–Nagumo neuronal models and stochastic bifurcations. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 63:031911, 2001.

    Article  Google Scholar 

  24. J. N. Teramae and D. Tanaka. Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys. Rev. Lett., 93:204103, 2004.

    Article  Google Scholar 

  25. S. F. Traynelis and F. Jaramillo. Getting the most out of noise in the central nervous system. Trends Neurosci., 21:137–145, 1998.

    Article  Google Scholar 

  26. H. C. Tuckwell. Introduction to Theoretical Neurobiology. Vol. 2, Nonlinear and Stochastic Theories, volume 8 of Cambridge Studies in Mathematical Biology. Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  27. H. C. Tuckwell, R. Rodriguez, and F. Y. Wan. Determination of firing times for the stochastic Fitzhugh-Nagumo neuronal model. Neural Comput., 15:143–159, Jan 2003.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bard Ermentrout .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ermentrout, G.B., Terman, D.H. (2010). Noise. In: Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87708-2_10

Download citation

Publish with us

Policies and ethics