Skip to main content

Map-Based Cloning of Genes in Triticeae (Wheat and Barley)

  • Chapter
  • First Online:
Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

In the Triticeae crops wheat and barley, only genetic information is available for many genes underlying agronomically important traits, as well as for natural or induced mutants. Therefore, map-based (positional) cloning is the most promising approach for the molecular isolation of genes causing these traits or mutant phenotypes. A growing number of genes (currently 19) have been isolated from wheat and barley based on genetic information only, and a lot has been learnt on the most suitable approaches for such challenging projects in the large and complex genomes of Triticeae. With the ongoing or starting projects on the generation of high-resolution physical maps in barley and wheat, map-based cloning will become simpler and faster in the near future. In order to fully exploit these new resources, there is an increasing need for high-resolution mapping populations. In addition, new and efficient tools have to be developed for the validation of the candidate genes identified in positional cloning. Here, we review the state of the art of positional gene cloning in the Triticeae crops and discuss the challenges in this field of research in the next years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bossolini, E., Wicker, T., Knobel, P.A. and Keller, B. (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J. 49, 704–717.

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B. and Kleinhofs, A. (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA 99, 9328–9333.

    Article  PubMed  CAS  Google Scholar 

  • Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. (1997) The barley mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695–705.

    Article  PubMed  CAS  Google Scholar 

  • Cloutier, S., McCallum, B.D., Loutre, C., Banks, T.W., Wicker, T., Feuillet, C., Keller, B. and Jordan, M.C. (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol. Biol. 65, 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C. and Schulze-Lefert, P. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977.

    Article  PubMed  CAS  Google Scholar 

  • Douchkov, D., Nowara, D., Zierold, U. and Schweizer, P. (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol. Plant Microbe Int. 8, 755–761.

    Article  Google Scholar 

  • Endo, T.R. and Gill, B.S. (1996) The deletion stocks of common wheat. J. Hered. 87, 295–307.

    CAS  Google Scholar 

  • Ewing, B., Hillier, L., Wendl, M.C. and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.

    PubMed  CAS  Google Scholar 

  • Falconer, D.S. and Mackay, T.F.C. (1996) Introduction to Quantitative Genetics. Longman, Essex, England.

    Google Scholar 

  • Faris, J.D., Fellers, J.P., Brooks, S.A. and Gill, B.S. (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164, 311–321.

    PubMed  CAS  Google Scholar 

  • Faris, J.D., Zhang, Z., Fellers, J.P. and Gill, B.S. (2008) Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus Q. Funct. Integr. Genomics [Epub ahead of print].

    Google Scholar 

  • Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A. and Keller, B. (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA 100, 15253–15258.

    Article  PubMed  CAS  Google Scholar 

  • Gale, M.D. and Devos, K.M. (1998) Plant comparative genetics after 10 years. Science 282, 656–659.

    Article  PubMed  CAS  Google Scholar 

  • Graner, A., Jahoor, A., Schondelmaier, J., Siedler, H., Pillen, K., Fischbeck, G., Wenzel, G. and Herrmann, R.G. (1991) Construction of an RFLP map of barley. Theor. Appl. Genet. 83, 250–256.

    Article  Google Scholar 

  • Griffiths, S., Sharp, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I. and Moore, G. (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752.

    Article  PubMed  CAS  Google Scholar 

  • Guyot, R., Yahiaoui, N., Feuillet, C. and Keller, B. (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct. Integr. Genomics 4, 47–58.

    Article  PubMed  CAS  Google Scholar 

  • Halterman, D.A., Zhou, F.S., Wei, F.S., Wise, R.P. and Schulze-Lefert, P. (2001) The Mla6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specific to Blumeria graminis f.sp hordei in barley and wheat. Plant J. 25, 335–348.

    Article  PubMed  CAS  Google Scholar 

  • Halterman, D.A., Wei, F.S. and Wise, R.P. (2003) Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol. 131, 558–567.

    Article  PubMed  CAS  Google Scholar 

  • Halterman, D.A. and Wise, R.P. (2004) A single-amino acid substitution in the sixth leucine-rich repeat of barley Mla6 and Mla13 alleviates dependence on Rar1 for disease resistance signaling. Plant J. 38, 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Holzberg, S., Brosio, P., Gross, C. and Pogue, G.P. (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 3, 315–327.

    Article  Google Scholar 

  • Horvath, H., Rostoks, N., Brueggeman, R., Steffenson, B., von Wettstein, D. and Kleinhofs, A. (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc. Natl. Acad. Sci. USA 100, 364–369.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L., Brooks, S.A., Li, W., Fellers, J.P., Trick, H.N. and Gill, B.S. (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164, 655–664.

    PubMed  CAS  Google Scholar 

  • Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T. and Yano, M. (2007) Six-rowed barley originated from a mutation in a homeodomain-leucin zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 104, 1424–1429.

    Article  PubMed  CAS  Google Scholar 

  • Lagudah, E.S., McFadden, H., Singh, R.P., Huerta-Espino, J., Bariana, H.S. and Spielmeyer, W. (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet. 114, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Leister, D. (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet. 20, 116–122.

    Article  PubMed  CAS  Google Scholar 

  • Luo, M.C., Thomas, C.S., Deal, K.R., You, F.M., Anderson, O.D., Gu, Y.Q., Li, W., Kuraparthy, V., Gill, B., McGuire, P.E. and Dvorak, J. (2003) Construction of contigs of Ae.tauschii genomic DNA fragments cloned in BAC and BiBAC vectors. In: N.E. Ponga, M. Romano, E.A. Ponga and G. Galterio (Eds.), Proceedings of the 10th International Wheat Genetics Symposium. Istituto Sperimentale per la Ceralicoltura, Rome.

    Google Scholar 

  • McIntosh, R.A., Devos, K.M., Dubcovsky, J., Rogers, W.J., Morris, C.F., Appels, R., Somers, D.J. and Anderson, O.A. (2007) Catalogue of gene symbols for wheat: 2007 supplement. In: W.R. Raupp (Ed.), Annual Wheat Newsletter, Volume 53. Kansas State University, Manhattan, KS, pp. 159–180.

    Google Scholar 

  • Paillard, S., Schnurbusch, T., Winzeler, M., Messmer, M., Sourdille, P., Aberhalden, O., Keller, B. and Schachermayr, G. (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor. Appl. Genet. 107, 1235–1242.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, A.H., Bowers, J.E. and Chapman, B.A. (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. USA 101, 9903–9908.

    Article  PubMed  CAS  Google Scholar 

  • Paux, E., Roger, D., Badaeva, E., Gay, G., Bernard, M., Sourdille, P. and Feuillet, C. (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 48, 463–474.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, J.W., Schurch, A.C., Yahiaoui, N., Dong, L.L., Fan, H.J., Zhang, Z.J., Keller, B. and Ling, H.Q. (2007) Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor. Appl. Genet. 115, 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Roder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P. and Ganal, M.W. (1998) A microsatellite map of wheat. Genetics 149, 2007–2023.

    PubMed  CAS  Google Scholar 

  • Schweizer, P., Pokorny, J., Abderhalden, O. and Dudler, R. (1999) A transient assay system for the functional assessment of defense-related genes in wheat. Mol. Plant Microbe Int. 12, 647–654.

    Article  CAS  Google Scholar 

  • Scofield, S.R., Huang, L., Brandt, A.S. and Gill, B.S. (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol. 138, 2165–2173.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Q.H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K. and Shulze-Lefert, P. (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15, 732–744.

    Article  PubMed  CAS  Google Scholar 

  • Shirasu, K., Lahaye, T., Tan, M.W., Zhou, F., Azevedo, C. and Schulze-Lefert, P. (1999a) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99, 355–366.

    Google Scholar 

  • Shirasu, K., Nielsen, K., Piffanelli, P., Oliver, R. and Schulze-Lefert, P. (1999b) Cell-autonomous complementation of mlo resistance using a biolistic transient expression system. Plant J. 17, 293–299.

    Google Scholar 

  • Simons, K.J., Fellers, J.P., Trick, H.N., Zhang, Z.C., Tai, Y.S., Gill, B.S. and Farris, J.D. (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Srichumpa, P., Brunner, S., Keller, B. and Yahiaoui, N. (2005) Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 139, 885–895.

    Article  PubMed  CAS  Google Scholar 

  • Stein, N., Feuillet, C., Wicker, T., Schlagenhauf, E. and Keller, B. (2000) Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc. Natl. Acad. Sci. USA 97, 13436–13441.

    Article  PubMed  CAS  Google Scholar 

  • Stein, N., Perovic, D., Kumlehn, J., Pellio, B., Stracke, S., Streng, S., Ordon, F. and Graner, A. (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J. 42, 912–922.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, T., Baumann, U., Hayes, J., Collins, N.C., Shi, B.J., Schnurbusch, T., Hay, A., Mayo, G., Pallotta, M., Tester, M. and Langridge, P. (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318, 1446–1449.

    Article  PubMed  CAS  Google Scholar 

  • Travella, S., Klimm, T.E. and Keller, B. (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol. 142, 6–20.

    Article  PubMed  CAS  Google Scholar 

  • Turner, A., Beales, J., Faure, S., Dunford, R.P. and Laurie, D.A. (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034.

    Article  PubMed  CAS  Google Scholar 

  • Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. and Dubcovsky, J. (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301.

    Article  PubMed  CAS  Google Scholar 

  • Wei, F.S., Gobelman-Werner, K., Morroll, S.M., Kurth, J., Mao, L., Wing, R., Leister, D., Schulze-Lefert, P. and Wise, R.P. (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153, 1929–1948.

    PubMed  CAS  Google Scholar 

  • Wicker, T., Stein, N., Albar, L., Feuillet, C., Schlagenhauf, E. and Keller, B. (2001) Analysis of a contigous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 26, 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, T., Guyot, R., Yahiaoui, N. and Keller, B. (2003) CACTA transposons in Triticeae – a diverse family of high-copy repetitive elements. Plant Physiol. 132, 52–63.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, T., Zimmermann, W., Perovic, D., Paterson, A.H., Ganal, M., Graner, A. and Stein, N. (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. Plant J. 41, 184–194.

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui, N., Srichumpa, P., Dudler, R. and Keller, B. (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew reistance gene Pm3 from hexaploid wheat. Plant J. 37, 528–538.

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui, N., Brunner, S. and Keller, B. (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 47, 85–98.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. (2003) Positional cloning of the wheat vernalization gene Vrn1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V. and Dubcovsky, J. (2004) The wheat Vrn2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S. and Dubcovsky, J. (2006) The wheat and barley vernalization gene Vrn3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 103, 19581–19586.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F.S., Kurth, J.C., Wei, F.S., Elliott, C., Vale, G., Yahiaoui, N., Keller, B., Somerville, S., Wise, R. and Schulze-Lefert, P. (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13, 337–350.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krattinger, S., Wicker, T., Keller, B. (2009). Map-Based Cloning of Genes in Triticeae (Wheat and Barley). In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_12

Download citation

Publish with us

Policies and ethics