Skip to main content

Excitability

  • Chapter
Mathematical Physiology

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 8/1))

We have seen in previous chapters that the control of cell volume results in a potential difference across the cell membrane, and that this potential difference causes ionic currents to flow through channels in the cell membrane. Regulation of this membranepotential by control of the ionic channels is one of the most important cellular functions. Many cells, such as neurons and muscle cells, use the membrane potential as a signal, and thus the operation of the nervous system and muscle contraction (to name but two examples) are both dependent on the generation and propagation of electrical signals.

To understand electrical signaling in cells, it is helpful (and not too inaccurate) to divide all cells into two groups: excitable cells and nonexcitable cells. Many cells maintain a stable equilibrium potential. For some, if currents are applied to the cell for a short period of time, the potential returns directly to its equilibrium value after the applied current is removed. Such cells are nonexcitable, typical examples of which are the epithelial cells that line the walls of the gut. Photoreceptors (Chapter 19) are also nonexcitable, although in their case, membrane potential plays an extremely important signaling role nonetheless.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keener, J., Sneyd, J. (2009). Excitability. In: Keener, J., Sneyd, J. (eds) Mathematical Physiology. Interdisciplinary Applied Mathematics, vol 8/1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75847-3_5

Download citation

Publish with us

Policies and ethics