Skip to main content

Role of Cell-matrix Interactions in Osteoclast Differentiation

  • Conference paper
Osteoimmunology

Osteoclast and their mononuclear cell precursors are present within the bone microenvironment at sites of physiologic and pathologic bone resorption. Analysis of tissues from sites of bone resorption reveal that cells expressing the full morphological and functional properties of mature osteoclasts are restricted to the immediate bone surface. We hypothesize that in addition to cytokines, components of the bone matrix and specific cell surface receptors on osteoclasts and their precursors play an essential role in determining the genetic profile and functional properties of fully differentiated resorbing osteoclasts. We have employed expression profiling, with an in vitro model of matrix-dependent osteoclast differentiation, to identify the molecular pathways by which bone matrix-interactions induce terminal osteoclast differentiation and activation. In preliminary studies, we have identified unique genes and transcriptional pathways that are induced by interaction of osteoclast precursors with specific components of the mineralized bone matrix. The authenticity of the gene profiles, as markers of osteoclast differentiation and activation, have been provisionally validated using an in vivo animal bone implantation model and by examination of tissues from patients with specific forms of pathologic osteoclast-mediated bone resorption. The ultimate goal of our studies is to identify new molecular targets for inhibiting osteoclast-mediated bone loss in disorders of pathologic bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Athanasou, N.A. 1996. Cellular biology of bone-resorbing cells. J Bone J Surg 78-A: 87–102.

    Google Scholar 

  • Athanasou, N.A., and J. Quinn. 1990. Immunophenotypic differences between osteoclasts and macrophage polykaryons: immunohistological distinction and implications for osteoclast ontogeny and function. J Clin Pathol 43: 997–1003.

    Article  CAS  PubMed  Google Scholar 

  • Burger, E.H., J.W. Van der Meer, J.S. van de Gevel, J.C. Gribnau, G.W. Thesingh, and R. van Furth. 1982. In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes. J Exp Med 156: 1604–1614.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, T.J. 2000. Regulation of the differentiation and function of osteoclasts. J Pathol 192: 4–13.

    Article  CAS  PubMed  Google Scholar 

  • Duong, L.T., P. Lakkakorpi, I. Nakamura, and G.A. Rodan. 2000. Integrins and signaling in osteoclast function. Matrix Biol 19: 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Duong, L.T., and G.A. Rodan. 1999. The role of integrins in osteoclast function. J Bone Miner Metab 17: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Flores, M.E., D. Heinegard, F.P. Reinholt, and G. Andersson. 1996. Bone sialoprotein coated on glass and plastic surfaces is recognized by different beta 3 integrins. Exp Cell Res 227: 40–46.

    Article  CAS  PubMed  Google Scholar 

  • Hattersley, G., and T.J. Chambers. 1989. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures. Endocrinology 125: 1606–1612.

    Article  CAS  PubMed  Google Scholar 

  • Helfrich, M.H., S.A. Nesbitt, P.T. Lakkakorpi, M.J. Barnes, S.C. Bodary, G. Shankar, W.T. Mason, D.L. Mendrick, H.K. Vaananen, and M.A. Horton. 1996. Beta 1 integrins and osteoclast function: involvement in collagen recognition and bone resorption. Bone 19: 317–328.

    Article  CAS  PubMed  Google Scholar 

  • Holliday, L.S., H.G. Welgus, C.J. Fliszar, G.M. Veith, J.J. Jeffrey, and S.L. Gluck. 1997. Initiation of osteoclast bone resorption by interstitial collagenase. J Biol Chem 272: 22053–22058.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, M., N. Namba, J. Chappel, S.L. Teitelbaum, and F.P. Ross. 1998. Granulocyte macrophage-colony stimulating factor reciprocally regulates alphav-associated integrins on murine osteoclast precursors. Mol Endocrinol 12: 1955–1962.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, M., F.P. Ross, J.M. Erdmann, Y. Abu-Amer, S. Wei, and S.L. Teitelbaum. 2000. Tumor necrosis factor alpha regulates alpha(v) beta5 integrin expression by osteoclast precursors in vitro and in vivo. Endocrinology 141: 284–290.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, H., S. Hirata, Y. Nishibayashi, S. Imura, H. Kubo, and O. Ohno. 1994. The role of adhesion molecules in synovial pannus formation in rheumatoid arthritis. Clin Orthop 300: 297–303.

    PubMed  Google Scholar 

  • Karsdal, M.A., M.S. Fjording, N.T. Foged, J.M. Delaisse, and A. Lochter. 2001. Transforming growth factor-beta-induced osteoblast elongation regulates osteoclastic bone resorption through a p38 mitogen-activated protein kinase- and matrix metalloproteinase-dependent pathway. J Biol Chem 276: 39350–39358.

    Article  CAS  PubMed  Google Scholar 

  • Kornak, U., D. Kasper, M.R. Bosl, E. Kaiser, M. Schweizer, A. Schulz, W. Friedrich, G. Delling, and J.T. Jentsch. 2001. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104: 205–215.

    Article  CAS  PubMed  Google Scholar 

  • McHugh, K.P., K. Hodivala-Dilke, M.H. Zheng, N. Namba, J. Lam, D. Novack, X. Feng, F.P. Ross, R.O. Hynes, and S.L. Teitelbaum. 2000. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105: 433–440.

    Article  CAS  PubMed  Google Scholar 

  • McHugh, K.P., Z. Shen, J. Fleming, T.N. Crotti, Y. Harada, B.E. Bierbaum, and S.R. Goldring. 2005. Bone substrate-specific induction of the CTR gene in peri-implant osteolysis: ORS Transactions, Vol. 30. Washington, DC, p. 147.

    Google Scholar 

  • McHugh, K.P., T.N. Crotti, Z. Shen, M.R. Flannery, and S.R. Goldring. 2006. Identification of molecular pathways of bone-matrix dependent osteoclast gene expression insights into the mechanism of peri-implant osteolysis: ORS Transactions, Vol. 31. Chicago, IL, p. 63.

    Google Scholar 

  • Messent, A.J., D.S. Tuckwell, V. Knauper, M.J. Humphries, G. Murphy, and J. Gavrilovic. 1998. Effects of collagenase-cleavage of type I collagen on alpha2 beta1 integrin-mediated cell adhesion. J Cell Sci 111 (Pt 8): 1127–1135.

    CAS  PubMed  Google Scholar 

  • Roodman, G.D. 1996. Advances in bone biology: the osteoclast. Endocr Rev 17: 308–332.

    CAS  PubMed  Google Scholar 

  • Roodman, G.D. 1999. Cell biology of the osteoclast. Exp Hem 27: 1229–1241.

    Article  CAS  Google Scholar 

  • Shen, Z., T.N. Crotti, K.P. McHugh, K. Matsuzaki, E.M. Gravallese, B.E. Bierbaum, and S.R. Goldring. 2006. The role of cell-substrate interactions in the pathogenesis of osteoclast-mediated peri-implant osteolysis. Arthritis Research and Therapy Arthritis Res Ther 8(3): R70).

    Article  Google Scholar 

  • Shen, Z., R. Fajardo, A. Tsay, T. Crotti, K. McHugh, S.D. Bromme, B.E. Bierbaum, and S.R. Goldring. 2004. The role of bone matrix in osteoclast differentiation and activation. J Bone Miner Res 19: S282.

    Google Scholar 

  • Suda, T., I. Nakamura, E. Jimi, and N. Takahashi. 1997. Regulation of osteoclast function. J Bone Miner Res 12: 869–879.

    Article  CAS  PubMed  Google Scholar 

  • Taranta, A., S. Migliaccio, I. Recchia, M. Caniglia, M. Luciani, G. De Rossi, C. Dionisi-Vici, R.M. Pinto, P. Francalanci, R. Boldrini, E. Lanino, G. Dini, G. Morreale, S.H. Ralston, A. Villa, P. Vezzoni, D. Del Principe, F. Cassiani, G. Palumbo, and A. Teti. 2003. Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol 162: 57–68.

    CAS  PubMed  Google Scholar 

  • Teitelbaum, S. 2000. Bone resorption by osteoclasts. Science 289: 1504–1508.

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum, S.L., and F.P. Ross. 2003. Genetic regulation of osteoclast development and function. Nat Rev Genet 4: 638–649.

    Article  CAS  PubMed  Google Scholar 

  • Tezuka, K., K. Nemoto, Y. Tezuka, T. Sato, Y. Ikeda, M. Kobori, H. Kawashima, H. Eguchi, Y. Hakeda, and M. Kumegawa. 1994. Identification of matrix metalloproteinase 9 in rabbit osteoclasts. J Biol Chem 269: 15006–15009.

    CAS  PubMed  Google Scholar 

  • Vaananen, H.K., E.K. Karhukorpi, K. Sundquist, B. Wallmark, I. Roininen, T. Hentunen, J. Tuukkanen, P. Lakkakorpi. 1990. Evidence for the presence of **th vacuolar H+-ATPase type in the ruffled border of ostoclasts. J Cell Biol 111: 1305–1311.

    Article  CAS  PubMed  Google Scholar 

  • Veale, D., S. Rogers, and O. Fitzgerald. 1995. Immunolocalization of adhesion molecules in psoriatic arthritis, psoriatic and normal skin. Br J Dermatol 132: 32–38.

    Article  CAS  PubMed  Google Scholar 

  • Walker, D.G. 1972. Congenital osteopetrosis in mice cured by parabiotic union with normal siblings. Endocrinology 91: 916–920.

    Article  CAS  PubMed  Google Scholar 

  • Youssef, P.P., S. Triantafillou, A. Parker, M. Coleman, P.J. Roberts-Thomson, M.J. Ahern, and M.D. Smith. 1997. Variability in cytokine and cell adhesion molecule staining in arthroscopic synovial biopsies: quantification using color video image analysis [see comments]. J Rheumatol 24: 2291–2298.

    CAS  PubMed  Google Scholar 

  • Zhao, W., M. Byrne, B. Boyce, and S. Krane. 1999. Bone resorption induced by parathyroid hormone is strikingly diminished in collagenase-resistant mice. J Clin Invest 103: 517–524.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

McHugh, K.P. et al. (2007). Role of Cell-matrix Interactions in Osteoclast Differentiation. In: Choi, Y. (eds) Osteoimmunology. Advances in Experimental Medicine and Biology, vol 602. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72009-8_14

Download citation

Publish with us

Policies and ethics