Skip to main content

Foundations of Confocal Scanned Imaging in Light Microscopy

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

Seldom has the introduction of a new instrument generated as instant an excitement among biologists as the laser-scanning confocal microscope. With the new microscope, one can slice incredibly clean, thin optical sections out of thick fluorescent specimens; view specimens in planes tilted to, and even running parallel to, the line of sight; penetrate deep into light-scattering tissues; gain impressive three-dimensional (3D) views at very high resolution; obtain differential interference or phase-contrast images in exact register with confocal fluorescence images; and improve the precision of microphotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbe, E., 1884, Note on the proper definition of the amplifying power of a lens or a lens-system, J. Royal Microsc. Soc. 4:348–351.

    Google Scholar 

  • Agard, D.A., and Sedat, J.W., 1983, Three dimensional architecture of a polytene nucleus, Nature 302:676–681.

    Article  CAS  PubMed  Google Scholar 

  • Agard, D.A., Hiraoka, Y., Shaw, P., and Sedat, J.W., 1989, Fluorescence microscopy in three dimensions, Methods Cell Biol. 30: 353–377.

    Article  CAS  PubMed  Google Scholar 

  • Allen, R.D., 1985, New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy, Annu. Rev. Biophys. Biophysical Chem. 14:265–290.

    Article  CAS  Google Scholar 

  • Allen, R.D., Travis, J.L., Allen, N.S., and Yilmaz, H., 1981a, Video-enhanced contrast polarization (AVEC-POL) microscopy: A new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris, Cell Motil. 1:275–289.

    Article  CAS  PubMed  Google Scholar 

  • Allen, R.D., Allen, N.S., and Travis, J.L., 1981b, Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris, Cell Motil. 1:291–302.

    Article  CAS  PubMed  Google Scholar 

  • Amos, W.B., White, J.G., and Fordham, M., 1987, Use of confocal imaging in the study of biological structures, Appl. Opt. 26:3239–3243.

    Article  CAS  PubMed  Google Scholar 

  • Ă…slund, N., Carlsson, K., Liljeborg, A., and Majlof, L., 1983, PHOIBOS, a microscope scanner designed for micro-fluorometric applications, using laser induced fluorescence. In: Proceedings of the Third Scandinavian Conference on Image Analysis, Studentliteratur, Lund, p. 338.

    Google Scholar 

  • Ă…slund, N., Liljeborg, A., Forsgren, P.-O., and Wahlsten, S., 1987, Three dimensional digital microscopy using the PHOIBOS scanner, Scanning 9:227–235.

    Google Scholar 

  • Baxes, G.A., 1984, Digital Image Processing: A Practical Primer, Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Berek, M., 1927, Grundlagen der Tiefenwahrnehmung im Mikroskop, Marburg Sitzungs Ber. 62:189–223.

    Google Scholar 

  • Born, M., and Wolf, E., 1980, Principles of Optics, 6th ed., Pergamon Press, Oxford, England.

    Google Scholar 

  • Boyde, A., 1985a, Tandem scanning reflected light microscopy (TSRLM), Part 2: Pre-MICRO 84 applications at UCL, Proc. Royal Microsc. Soc. 20:131–139.

    Google Scholar 

  • Boyde, A., 1985b, Stereoscopic images in confocal (tandem scanning) microscopy, Science 230:1270–1272.

    Article  CAS  PubMed  Google Scholar 

  • Boyde, A., 1987, Colour-coded stereo images from the tandem scanning reflected light microscope (TSRLM), J. Microsc. 146:137–142.

    CAS  PubMed  Google Scholar 

  • Brakenhoff, G.J., Blom, P., and Barends, P., 1979, Confocal scanning light microscopy with high aperture immersion lenses, J. Microsc. 117:219–232.

    Google Scholar 

  • Brakenhoff, G.J., van der Voort, H.T.M., van Spronsen, E.A., Linnemans, W.A.M., and Nanninga, N., 1985, Three dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy, Nature 317:748–749.

    Article  CAS  PubMed  Google Scholar 

  • Brakenhoff, G.J., van der Voort, H.T.M., van Spronsen, E.A., and Nanninga, N., 1986, Three dimensional imaging by confocal scanning fluorescence microscopy. In: Recent Advances in Electron and Light Optical Imaging in Biology and Medicine, Vol. 483 (A. Somlyo, ed.), Ann. N.Y. Acad. Sci., New York, pp. 405–414.

    Google Scholar 

  • Brakenhoff, G.J., van Spronsen, E.A., van der Voort, H.T.M., and Nanninga, N., 1989, Three dimensional confocal fluorescence microscopy, Methods Cell Biol. 30:379–398.

    Article  CAS  PubMed  Google Scholar 

  • Bright, G.R., Fisher, G.W., Rogowska, J., and Taylor, D.L., 1989, Fluorescence ratio imaging microscopy, Methods Cell Biol. 30:157–192.

    Article  CAS  PubMed  Google Scholar 

  • Cagnet M., Françon, M., and Thrierr, J.C., 1962, Atlas of Optical Phenomena, Springer-Verlag, Berlin.

    Google Scholar 

  • Carlsson, K., Danielsson, P., Lenz, R., Liljeborg, A., Majlof, L., and Ă…slund, N., 1985, Three-dimensional microscopy using a confocal laser scanning microscope, Opt. Lett. 10:53–55.

    Article  CAS  PubMed  Google Scholar 

  • Castleman, K.R., 1979, Digital Image Processing, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Castleman, K.R., 1987, Spatial and photometric resolution and calibration requirements for cell image analysis instruments, Appl. Opt. 26:3338–3342.

    Article  CAS  PubMed  Google Scholar 

  • Castleman, K.R., 1993, Resolution and sampling requirements for digital image processing, analysis, and display. In: Electronic Light Microscopy (D. Shotton, ed.), Wiley-Liss Inc., New York, pp. 71–94.

    Google Scholar 

  • Conchello, J.-A., Heym, J.P., Wei, J.L., and Lichtman, J.W., 1997, NOVEL reflected light confocal profilometer, Proc. SPIE Conf. 2984:101–112.

    Google Scholar 

  • Cox, G., and Sheppard, C., 1993, Effects of image deconvolution on optical sectioning in conventional and confocal microscopes, Bioimaging 1:82–95.

    Article  Google Scholar 

  • Cox, I.J., and Sheppard, C.J.R., 1983, Scanning optical microscope incorporating a digital framestore and microcomputer, Appl. Opt. 22:1474–1478.

    Article  CAS  PubMed  Google Scholar 

  • Cox, I.J., and Sheppard, C.J.R., 1986, Information capacity and resolution in an optical system, J. Opt. Soc. Am. 3:1152–1158.

    Article  Google Scholar 

  • Cremer, C., and Cremer, T. 1978, Considerations on a laser-scanningmicroscope with high resolution and depth of field, Microsc. Acta 81:31–44.

    CAS  PubMed  Google Scholar 

  • Davidovits, P., and Egger, M.D., 1971, Scanning laser microscope for biological investigations, Appl. Opt. 10:1615–1619.

    Article  CAS  PubMed  Google Scholar 

  • Davidovits, P., and Egger, M.D., 1972, U.S. Patent #3,643,015, Scanning Optical Microscope.

    Google Scholar 

  • Denk, W., and Webb, W.W., 1987, Displacement fluctuation spectroscopy of the sensory hair bundles of mechanosensitive cells of the inner ear, Bull. Am. Phys. Soc. 32:645.

    Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    Article  CAS  PubMed  Google Scholar 

  • Egger, M.D., 1989, The development of confocal microscopy, Trends Neurosci.12:11.

    Google Scholar 

  • Egger, M.D., and Petrán?, M., 1967, New reflected-light microscope for viewing unstained brain and ganglion cells, Science 157:305–307.

    Google Scholar 

  • Ellis, G.W., 1966, Holomicrography: Transformation of image during reconstruction a posteriori, Science 154:1195–1196.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, G.W., 1978, Advances in visualization of mitosis in vivo. In: Cell Reproduction, in Honor of Daniel Mazia (E. Dirksen, D. Prescott, and C.F. Fox, eds.), Academic Press, New York, pp. 465–476.

    Google Scholar 

  • Ellis, G.W., 1979, A fiber-optic phase-randomizer for microscope illumination by laser, J. Cell Biol. 83:303a.

    Google Scholar 

  • Ellis, G.W., 1985, Microscope illuminator with fiber-optic source integrator, J. Cell Biol. 101:83a.

    Article  Google Scholar 

  • Ellis, G.W., 1988, Scanned aperture light microscopy In: Proceedings of the Forty-sixth Annual Meeting of EMSA, San Francisco Press, San Francisco, pp. 48–49.

    Google Scholar 

  • Fay, F.S., Fogarty, K.E., and Coggins, J.M., 1985, Analysis of molecular distribution in single cells using a digital imaging microscope. In: Optical Methods in Cell Physiology (P. De Weer and B.M. Salzberg, eds.), John Wiley & Sons, New York.

    Google Scholar 

  • Flory, L.E., 1951, The television microscope, Cold Spring Harbor Symp. Quant. Biol. 16:505–509.

    CAS  PubMed  Google Scholar 

  • Freed, J.J., and Engle, J.L. 1962, Development of the vibrating-mirror flying spot microscope for ultraviolet spectrophotometry, Ann. N.Y. Acad. Sci. 97:412–448.

    Google Scholar 

  • Fuchs, H., Pizer, S.M., Heinz, E.R., Bloomberg, S.H., Tsai, L-C., and Strickland, D.C., 1982, Design and image editing with a space-filling 3D display based on a standard raster graphics system, Proc. Soc. Photo. Opt. Instrum. Eng. 367:117–127.

    Google Scholar 

  • Gibson, S.F., and Lanni, F., 1991. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy, J. Opt. Soc. Am. A 8:1601–1613.

    Google Scholar 

  • Goldstein, S.R., Hubin, T., Rosenthal, S., and Washburn, C., 1990, The VRIDICOM: a video rate image dissector confocal microscope. In: Optical Microscopy for Biology (B. Herman and K. Jacobson, eds.), Wiley-Liss, Inc., New York, pp. 59–72.

    Google Scholar 

  • Gonzales, R.C., and Wintz, P., 1987, Digital Image Processing, 2nd ed., Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Grego, S., Cantillana, V., and Salmon, E.D., 21, Microtubule treadmilling in vitro investigated by fluorescence speckle and confocal microscopy, Biophys. J. 81:66–78.

    Google Scholar 

  • Gustafsson, M.G.L., 20, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microsc. 198:82–87.

    Google Scholar 

  • Hamilton, D.K., and Wilson, T. 1984, Two-dimensional phase imaging in the scanning optical microscope, Appl. Opt. 23:348–352.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, E.W., 1986, Appendix II. In: Video Microscopy (S. InouĂ©, ed.), Plenum Press, New York, pp. 467–475.

    Google Scholar 

  • Hard, R., Zeh, R., and Allen, R.D., 1977, Phase-randomized laser illumination for microscopy, J. Cell Sci. 23:335–343.

    CAS  PubMed  Google Scholar 

  • Harris, J.L., 1964, Diffraction and resolving power, J. Opt. Soc. Am. 54:931–936.

    Article  Google Scholar 

  • Hecht, E., 1987, Optics, 2nd ed., Addison-Wesley, Reading, Massachusetts. Hell, S.W., and Wichmann, J., 1994, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19:780–782.

    Google Scholar 

  • Hell, S.W., Reiner, G., Cremer, C., and Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.

    Google Scholar 

  • Hellwarth, R., and Christensen, P., 1974, Nonlinear optical microscopic examination of structure in polycrystalline ZnSe, Optics Comm. 12:318–322.

    Article  CAS  Google Scholar 

  • Hoffman, R., and Gross, L., 1975, Modulation contrast microscopy, Appl. Opt. 14:1169–1176.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, H.H., 1951, The concept of partial coherence in optics, Proc. Royal Soc. Lond. 208A:263.

    Article  Google Scholar 

  • Hopkins, H.H., and Barham, P.M., 1950, The influence of the condenser on microscopic resolution, Proc. Royal Soc. Lond. 63B:737–744.

    Google Scholar 

  • Ichihara, A., Tanaami, T., Isozaki, K., Sugiyama, Y., Kosugi, Y., Mikuriya, K., Abe, M., and Uemura, I., 1996, High-speed confocal fluorescence micro microscopy using a Nipkow scanner with microlenses – for 3-D imaging of single fluorescent molecule in real-time, Bioimages 4:57–62.

    Google Scholar 

  • Ingelstam, E., 1956, Different forms of optical information and some interrelations between them. In: Problem in Contemporary Optics, Istituto Nazionale di Ottica, Arcetri-Firenze, pp. 128–143.

    Google Scholar 

  • InouĂ©, S., 1981, Video image processing greatly enhances contrast, quality, and speed in polarization based microscopy, J. Cell Biol. 89:346–356.

    Article  PubMed  Google Scholar 

  • InouĂ©, S., 1986, Video Microscopy, Plenum Press, New York

    Google Scholar 

  • InouĂ© S., 1989, Imaging of unresolved objects, superresolution, and precision of distance measurement, with video microscopy, Methods Cell Biol. 30:85–112.

    Article  PubMed  Google Scholar 

  • InouĂ© S., 1994, Ultra-thin optical sectioning and dynamic volume investigation with conventional light microscopy. In: Three-Dimensional Confocal Microscopy (J.K. Stevens, L.R. Mills, and J. Trogadis, eds.), Academic Press, San Diego, pp. 397–419.

    Google Scholar 

  • InouĂ©, S., and InouĂ©, T.D., 1986, Computer-aided stereoscopic video reconstruction and serial display from high-resolution light-microscope optical sections. In: Recent Advances in Electron and Light Optical Imaging in Biology and Medicine, Vol. 483 (A. Somlyo, ed.), Ann. N.Y. Acad. Sci., New York, pp. 392–404.

    Google Scholar 

  • InouĂ©, S., and InouĂ©, T.D., 22, Direct-view high-speed confocal scanner —the CSU-10. In: Cell Biological Applications of Confocal Microscopy, 2nd ed. (B. Matsumoto, ed.), Academic Press, San Diego, pp. 87–123.

    Google Scholar 

  • InouĂ©, S., and Oldenbourg, R., 1995, Optical instruments: Microscopes. In: Handbook of Optics, 2nd ed., Vol. 2 (M. Bass, ed.), McGraw-Hill, New York, pp. 17.1–17.52.

    Google Scholar 

  • InouĂ©, S., and Spring, K., 1997, Video Microscopy, 2nd ed., Plenum Press, New York.

    Google Scholar 

  • InouĂ©, S., Goda, M., and Knudson, R.A., 21a, Centrifuge polarizing microscope. II. Sample biological applications, J. Microsc. 201:357–367.

    Google Scholar 

  • InouĂ©, S., Knudson, R.A., Goda, M., Suzuki, K., Nagano, C., Okada, N., Takahashi, H., Ichie, K., Iida, M., and Yamanaka, K., 21b, Centrifuge polarizing microscope. I. Rationale, design, and instrument performance, J. Microsc. 201:341–356.

    Google Scholar 

  • InouĂ©, S., Shimomura, O., Goda, M., Shribak, M., and Tran, P.T., 22, Fluorescence polarization of green fluorescent protein (GFP), Proc. Natl. Acad. Sci. 99:4272–4277.

    Google Scholar 

  • Kam, Z., Hanser, B., Gustafsson, M.G.L., Agard, D.A., and Sedat, J.W., 21, Computational adaptive optics for live three-dimensional biological imaging, Proc. Natl. Acad. Sci. 98:3790–3795.

    Google Scholar 

  • Klar, T.A., Jacobs, S., Dyba, M., Egner, A., and Hell, S.W., 20, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, Proc. Natl. Acad. Sci. 97:8206–8210.

    Google Scholar 

  • Koester, C.J., 1980, Scanning mirror microscope with optical sectioning characteristics: Applications in ophthalmology, Appl. Opt. 19:1749–1757.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, H., and InouĂ©, S., 1959, Diffraction images in the polarizing microscope, J. Opt. Soc. Am. 49:191–198.

    Article  CAS  PubMed  Google Scholar 

  • Leith, E.N., and Upatnieks, J., 1963, Wavefront reconstruction with continuous-tone objects, J. Opt. Soc. Am. 53:1377–1381.

    Article  Google Scholar 

  • Leith, E.N., and Upatnieks, J., 1964, Wavefront reconstruction with diffused illumination and 3D objects, J. Opt. Soc. Am. 54:1295–1301.

    Article  Google Scholar 

  • Lewin, R., 1985, New horizons for light microscopy, Science 230:1258–1262.

    Article  CAS  PubMed  Google Scholar 

  • Linfoot, E.H., and Wolf, E., 1953, Diffraction images in systems with an annular aperture, Proc. Phys. Soc. B 66:145–149.

    Article  Google Scholar 

  • Linfoot, E.H., and Wolf, E., 1956, Phase distribution near focus in an aberration- free diffraction image, Proc. Phys. Soc. B 69:823–832.

    Article  Google Scholar 

  • Maddox, P., Desai, A., Oegema, K., Mitchison, T.J., and Salmon, E.D., 22, Poleward microtubule flux is a major component of spindle dynamics and anaphase A in mitotic Drosophila embryos, Curr. Biol. 12:1670–1674.

    Google Scholar 

  • McCarthy, J.J., and Walker, J.S., 1988, Scanning confocal optical microscopy, EMSA Bull. 18:75–79.

    Google Scholar 

  • Minsky, M., 1957, U.S. Patent #3013467, Microscopy Apparatus. Minsky, M., 1988, Memoir on inventing the confocal scanning microscope, Scanning 10:128–138.

    Google Scholar 

  • Montgomery, P.O., Roberts, F., and Bonner, W., 1956, The flying-spot monochromatic ultra-violet television microscope, Nature 177:1172.

    Article  CAS  PubMed  Google Scholar 

  • Nipkow, P., 1884, German Patent #30,105.

    Google Scholar 

  • Nomarski, G., 1955, MicrointerfĂ©romĂ©tre diffĂ©rentiel Ă  ondes polarisĂ©es, J. Phys. Radium 16:S9–S13.

    Google Scholar 

  • Oldenbourg, R., 1996, A new view on polarization microscopy, Nature 381:811–812.

    Article  CAS  PubMed  Google Scholar 

  • Oldenbourg, R., and Mei, G., 1995, New polarized light microscope with precision universal compensator, J. Microsc. 180:140–147.

    CAS  PubMed  Google Scholar 

  • Oldenbourg, R., Salmon, E.D., and Tran, P.T., 1998, Birefringence of single and bundled microtubules, Biophys. J. 74:645–654.

    Article  CAS  PubMed  Google Scholar 

  • Oldenbourg, R., Terada, H., Tiberio, R., and InouĂ©, S., 1993, Image sharpness and contrast transfer in coherent confocal microscopy, J. Microsc. 172:31–39.

    Google Scholar 

  • Pawley, J.B., 22, Limitations on optical sectioning in live-cell confocal microscopy, Scanning 21:241–246.

    Google Scholar 

  • Petrán, M., Hadravsky, M., Egger, D., and Galambos, R., 1968, Tandemscanning reflected-light microscope, J. Opt. Soc. Am. 58:661–664.

    Google Scholar 

  • Quate, C.F., 1980, Microwaves, acoustic and scanning microscopy. In: Scanned Image Microscopy (E.A. Ash, ed.), Academic Press, San Diego, pp. 23–55.

    Google Scholar 

  • Sharnoff, M., Brehm, L., and Henry, R., 1986, Dynamic structures through microdifferential holography, Biophys. J. 49:281–291.

    Article  CAS  PubMed  Google Scholar 

  • Sheppard, C.J.R., and Choudhury, A., 1977, Image formation in the scanning microscope, Optica 24:1051.

    Article  Google Scholar 

  • Sheppard, C.J.R., Gannaway, J.N., Walsh, D., and Wilson, T., 1978, Scanning Optical Microscope for the Inspection of Electronic Devices, Microcircuit Engineering Conference, Cambridge.

    Google Scholar 

  • Sher, L.D., and Barry, C.D., 1985, The use of an oscillating mirror for 3D displays. In: New Methodologies in Studies of Protein Configuration (T.T. Wu, ed.), Van Nostrand-Reinhold, Princeton, New Jersey.

    Google Scholar 

  • Shimizu, Y., and Takenaka, H., 1994, Microscope objective design. In: Advances in Optical and Electron Microscopy, Vol. 14 (C. Sheppard and T. Mulvey, eds.), Academic Press, San Diego, pp. 249–334.

    Google Scholar 

  • Shotten, D., ed., 1993, Electronic Light Microscopy: The Principles and Practice of Video-enhanced Contrast, Digital Intensified Fluorescence, and Confocal Scanning Light Microscopy, John Wiley & Sons, New York.

    Google Scholar 

  • Shribak, M., InouĂ©, S., and Oldenbourg, R., 22, Polarization aberrations caused by differential transmission and phase shift in high-numericalaperture lenses: theory, measurement, and rectification, Opt. Eng. 41:943–954.

    Google Scholar 

  • Smith, L.W., and Osterberg, H., 1961, Diffraction images of circular selfradiant disks, J. Opt. Soc. Am. 51:412–414.

    Article  Google Scholar 

  • Squirrel, J.M., Wokosin, D.L., White, J.G., and Bavister, B.D., 1999, Longterm two-photon fluorescence imaging of mammalian embryos without compromising viability, Nature Biotech. 17:763–767.

    Article  Google Scholar 

  • Stevens, J.K., Mills, L.R., and Trogadis, J., 1994, Three-Dimensional Confocal Microscopy, Academic Press, San Diego.

    Google Scholar 

  • Streibl, N., 1985, Three dimensional imaging by a microscope, J. Opt. Soc. Am. A 2:121–127.

    Google Scholar 

  • Suzuki, T., and Hirokawa, Y., 1986, Development of a real-time scanning laser microscope for biological use, Appl. Opt. 25:4115–4121.

    Google Scholar 

  • Tanasugarn, L., McNeil, P., Reynolds, G.T., and Taylor, D.L., 1984, Microspectrofluorometry by digital image processing: Measurement of cytoplasmic pH, J. Cell Biol. 89:717–724.

    Google Scholar 

  • Tolardo di Francia, G., 1955, Resolving power and information, J. Opt. Soc. Am. 45:497–501.

    Google Scholar 

  • Tran, P.T., Marsh, L., Doye, V., InouĂ©, S., and Chang, F., 21, A mechanism for nuclear positioning in fission yeast based on microtubule pushing, J. Cell Biol. 153:397–411.

    Google Scholar 

  • Tsien, R.Y., 1989, Fluorescent indicators of ion concentration, Methods Cell Biol. 30:127–156.

    Article  CAS  PubMed  Google Scholar 

  • Volkmer, A., Cheng, J.-X., and Xie, X. S., 21, Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy, Phys. Rev. Lett. 87:023901-1-023901-4.

    Google Scholar 

  • Waterman-Storer, C.M., and Salmon, E.D., 1997, Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling, J. Cell Biol. 139:417–434.

    Article  CAS  PubMed  Google Scholar 

  • White, J.G., Amos, W.B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol. 105:41–48.

    Article  CAS  PubMed  Google Scholar 

  • Wijnaendts van Resandt, R.W., Marsman, H.J.B., Kaplan, R., Davoust, J., Stelzer, E.H.K., and Strickler, R., 1985, Optical fluorescence microscopy in three dimensions: Microtomoscopy, J. Microsc. 138:29–34.

    Google Scholar 

  • Wilke, V., Gödecke, U., and Seidel, P., 1983, Laser-scan-mikroskop, Laser and Optoelecktron 15:93–101.

    Google Scholar 

  • Wilson, T., 1985, Scanning optical microscopy, Scanning 7:79–87.

    Google Scholar 

  • Wilson, T., 1990, Confocal Microscopy, Academic Press, London.

    Google Scholar 

  • Wilson, T., and Sheppard, C., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, London.

    Google Scholar 

  • Wilson, T., Gannaway, J.N., and Johnson, P., 1980, A scanning optical microscope for the inspection of semiconductor materials and devices, J. Microsc. 118:390–314.

    Google Scholar 

  • Xiao, G.Q., and Kino, G.S., 1987, Areal-time confocal scanning optical microscope. In: Proceedings of SPIE, Vol. 809, Scanning Imaging Technology (T. Wilson and L. Balk, eds.), pp. 107–113.

    Google Scholar 

  • Young, J.Z., and Roberts, F., 1951, A flying-spot microscope, Nature 167: 231.

    Article  CAS  PubMed  Google Scholar 

  • Zernicke, V.F., 1935, Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung, Z. Tech. Phys. 16:454–457.

    Google Scholar 

  • Zworykin, V.K., 1934, The iconoscope – a modern version of the electric eye, Proceedings of IRE 22:16–32.

    Article  Google Scholar 

  • Zworykin, V.K., and Morton, G.A., 1954, Television: The Electronics of Image Transmission in Color and Monochrome, 2nd ed., John Wiley & Sons, New York.

    Google Scholar 

  • Abbe, E., 1873, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Schultzes Arc. f. Mikr. Anat. 9:413–468.

    Article  Google Scholar 

  • InouĂ©, S., 1988, Progress in video microscopy, Cell Motil. Cytoskel. 10:13–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Inoué, S. (2006). Foundations of Confocal Scanned Imaging in Light Microscopy. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_1

Download citation

Publish with us

Policies and ethics