Skip to main content

HLA and Autoimmunity

Structural Basis of Immune Recognition

  • Chapter
  • 734 Accesses

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

The MHC region on human chromosome 6p21 is a critical susceptibility locus for many human autoimmune diseases. Susceptibility to a number of these diseases, including rheumatoid arthritis, multiple sclerosis and type 1 diabetes, is associated with particular alleles of HLA-DR or HLA-DQ genes. Crystal structures of HLA-DR and HLA-DQ molecules with bound peptides from candidate autoantigens have demonstrated that critical polymorphic residues determine the shape and charge of key pockets of the peptide binding site and thus determine the interaction of these MHC molecules with peptides. These data provide strong support for the hypothesis that these diseases are peptide-antigen driven. In HLA-DR associated autoimmune diseases such as rheumatoid arthritis and pemphigus vulgaris, key polymorphic determinants are primarily localized to the P4 pocket of the binding site and determine whether the pocket has a positive or negative charge. Peptide binding studies have demonstrated that these changes in the P4 pocket have a significant impact on the repertoire of self-peptides that can be presented by these MHC class II molecules. In HLA-DQ associated diseases such as type 1 diabetes and celiac disease, the α57 polymorphism is critical for peptide presentation since it determines the charge of the P9 pocket of the binding site. The crystal structure of HLA-DQ8 demonstrated that the P9 pocket has a positive charge in HLA-DQ molecules associated with type 1 diabetes, due to the absence of a negative charge at P57. Striking structural similarities were identified between the human DQ8 and murine I-Ag7 molecules that confer susceptibility to type 1 diabetes, indicating that similar antigen presentation events may be relevant in humans and the NOD mouse model. Recent studies in the NOD mouse indicated that I-g7 can promote expansion in the thymus of a CD4 T cell population which recognizes a peptide ligand that stimulates a panel of islet-specific T cell clones. MHC class II molecules that confer susceptibility to an autoimmune disease may thus promote positive selection of potentially pathogenic T cell population in the thymus and later induce the differentiation of these cells into effector populations by presentation of peptides derived from the target organ.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown JH, Jardetzky TS, Gorga JC et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993;364:33–39.

    Article  PubMed  CAS  Google Scholar 

  2. Stern LJ, Brown JH, Jardetzky TS et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994;368:215–221.

    Article  PubMed  CAS  Google Scholar 

  3. Hunt DF, Michel H, Dickinson TA et al. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 1992;256:1817–1820.

    Article  PubMed  CAS  Google Scholar 

  4. Chicz RM, Urban RG, Gorga JC et al. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 1993;178:27–47.

    Article  PubMed  CAS  Google Scholar 

  5. Lanzavecchia A, Reid PA, Watts C. Irreversible association of peptides with class II MHC molecules in living cells. Nature 1992;357:249–252.

    Article  PubMed  CAS  Google Scholar 

  6. Jensen PE. Long-lived complexes between peptide and class II major histocompatibility complex are formed at low pH with no requirement for pH neutralization. J Exp Med 1992;176:793–798.

    Article  PubMed  CAS  Google Scholar 

  7. Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987;30:1205–1213.

    Article  PubMed  CAS  Google Scholar 

  8. Dessen A, Lawrence CM, Cupo S et al. X-ray crystal structure of HLA-DR4 (DRA*0101, DRB 1*0401) complexed with a peptide from human collagen II. Immunity 1997;7:473–481.

    Article  PubMed  CAS  Google Scholar 

  9. Hammer J, Gallazzi F, Bono E et al. Peptide binding specificity of HLA-DR4 molecules: Correlation with rheumatoid arthritis association. J Exp Med 1995;181:1847–1855.

    Article  PubMed  CAS  Google Scholar 

  10. Wucherpfennig KW, Yu B, Bhol K et al. Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: Charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. Proc Natl Acad Sci USA 1995;92:11935–11939.

    Article  PubMed  CAS  Google Scholar 

  11. Amagai M, Klaus-Kovtun V, Stanley JR. Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell 1991;67:869–877.

    Article  PubMed  CAS  Google Scholar 

  12. Scharf SJ, Friedmann A, Brautbar C et al. HLA class II allelic variation and susceptibility to pemphigus vulgaris. Proc Natl Acad Sci USA 1988;85:3504–3508.

    Article  PubMed  CAS  Google Scholar 

  13. Sone T, Tsukamoto K, Hirayama K et al. Two distinct class II molecules encoded by the genes within HLA-DR subregion of HLA-Dw2 and Dwl2 can act as stimulating and restriction molecules. J Immunol 1985;135:1288–1298.

    PubMed  CAS  Google Scholar 

  14. Smith KJ, Pyrdol J, Gauthier L et al. Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J Exp Med 1998;188:1511–1520.

    Article  PubMed  CAS  Google Scholar 

  15. Wucherpfennig KW, Sette A, Southwood S et al. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med 1994;179:279–290.

    Article  PubMed  CAS  Google Scholar 

  16. Davies JL, Kawaguchi Y, Bennett ST et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 1994;371:130–136.

    Article  PubMed  CAS  Google Scholar 

  17. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987;329:599–604.

    Article  PubMed  CAS  Google Scholar 

  18. Noble JA, Valdes AM, Cook M et al. The role of HLA class II genes in insulin-dependent diabetes mellitus: Molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 1996;59:1134–1148.

    PubMed  CAS  Google Scholar 

  19. Nepom GT, Erlich H. MHC class-II molecules and autoimmunity. Annu Rev Immunol 1991;9:493–525.

    Article  PubMed  CAS  Google Scholar 

  20. Awata T, Kuzuya T, Matsuda A et al. Genetic analysis of HLA class II alleles and susceptibility to type 1 (insulin-dependent) diabetes mellitus in Japanese subjects [published erratum appears in Diabetologia 1992 Sep;35(9):906]. Diabetologia 1992;35:419–424.

    Article  PubMed  CAS  Google Scholar 

  21. Acha-Orbea H, McDevitt HO. The first external domain of the nonobese diabetic mouse class II I-A beta chain is unique. Proc Natl Acad Sci USA 1987;84:2435–2439.

    Article  PubMed  CAS  Google Scholar 

  22. Wegmann DR, Norbury-Glaser M, Daniel D. Insulin-specific T cells are a predominant component of islet infiltrates in prediabetic NOD mice. Eur J Immunol 1994;24:1853–1857.

    Article  PubMed  CAS  Google Scholar 

  23. Lee KH, Wucherpfennig KW, Wiley DC. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol 2001;2:501–507.

    Article  PubMed  CAS  Google Scholar 

  24. Alleva DG, Crowe PD, Jin L et al. A disease-associated cellular immune response in type 1 diabetics to an immunodominant epitope of insulin. J Clin Invest 2001;107:173–180.

    Article  PubMed  CAS  Google Scholar 

  25. Yu B, Gauthier L, Hausmann DH et al. Binding of conserved islet peptides by human and murine MHC class II molecules associated with susceptibility to type I diabetes. Eur J Immunol 2000;30:2497–2506.

    Article  PubMed  CAS  Google Scholar 

  26. Kwok WW, Domeier ME, Johnson ML et al. HLA-DQB1 codon 57 is critical for peptide binding and recognition. J Exp Med 1996;183:1253–1258.

    Article  PubMed  CAS  Google Scholar 

  27. Corper AL, Stratmann T, Apostolopoulos V et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science 2000;288:505–511.

    Article  PubMed  CAS  Google Scholar 

  28. Latek RR, Suri A, Petzold SJ et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 2000;12:699–710.

    Article  PubMed  CAS  Google Scholar 

  29. Hausmann DH, Yu B, Hausmann S et al. pH-dependent peptide binding properties of the type I diabetes-associated I-Ag7 molecule: Rapid release of CLIP at an endosomal pH. J Exp Med 1999;189:1723–1734.

    Article  PubMed  CAS  Google Scholar 

  30. Sollid LM. Molecular basis of celiac disease. Annu Rev Immunol 2000;18:53–81.

    Article  PubMed  CAS  Google Scholar 

  31. Gillett PM, Gillett HR, Israel DM et al. High prevalence of celiac disease in patients with type 1 diabetes detected by antibodies to endomysium and tissue transglutaminase. Can J Gastroenterol 2001;15:297–301.

    PubMed  CAS  Google Scholar 

  32. Bao F, Yu L, Babu S et al. One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase autoantibodies. J Autoimmun 1999;13:143–148.

    Article  PubMed  CAS  Google Scholar 

  33. Molberg O, McAdam SN, Korner R et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 1998;4:713–717.

    Article  PubMed  CAS  Google Scholar 

  34. van de Wal Y, Kooy YM, van Veelen PA et al. Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. Proc Natl Acad Sci USA 1998;95:10050–10054.

    Article  PubMed  Google Scholar 

  35. Arentz-Hansen H, Korner R, Molberg O et al. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med 2000;191:603–612.

    Article  PubMed  CAS  Google Scholar 

  36. Schellekens GA, de Jong BA, van den Hoogen FH et al. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 1998;101:273–281.

    PubMed  CAS  Google Scholar 

  37. Masson-Bessiere C, Sebbag M, Girbal-Neuhauser E et al. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha-and beta-chains of fibrin. J Immunol 2001;166:4177–4184.

    PubMed  CAS  Google Scholar 

  38. Jang MH, Seth NP, Wucherpfennig KW. Ex vivo analysis of thymic CD4 T cells in nonobese diabetic mice with tetramers generated from I-A(g7)/class II-associated invariant chain peptide precursors. J Immunol 2003;171:4175–4186.

    PubMed  CAS  Google Scholar 

  39. Stratmann T, Martin-Orozco N, Mallet-Designe V et al. Susceptible MHC alleles, not background genes, select an autoimmune T cell reactivity. J Clin Invest 2003;112:902–914.

    Article  PubMed  CAS  Google Scholar 

  40. Judkowski V, Pinilla C, Schroder K et al. Identification of MHC class Il-restricted peptide ligands, including a glutamic acid decarboxylase 65 sequence, that stimulate diabetogenic T cells from transgenic BDC2.5 nonobese diabetic mice. J Immunol 2001;166:908–917.

    PubMed  CAS  Google Scholar 

  41. Yoshida K, Martin T, Yamamoto K et al. Evidence for shared recognition of a peptide ligand by a diverse panel of nonobese diabetic mice-derived, islet-specific, diabetogenic T cell clones. Int Immunol 2002;14:1439–1447.

    Article  PubMed  CAS  Google Scholar 

  42. Haskins K, Portas M, Bergman B et al. Pancreatic islet-specific T-cell clones from nonobese diabetic mice. Proc Natl Acad Sci USA 1989;86:8000–8004.

    Article  PubMed  CAS  Google Scholar 

  43. Katz JD, Wang B, Haskins K et al. Following a diabetogenic T cell from genesis through pathogenesis. Cell 1993;74:1089–1100.

    Article  PubMed  CAS  Google Scholar 

  44. Singer SM, Tisch R, Yang XD et al. Prevention of diabetes in NOD mice by a mutated I-Ab transgene. Diabetes 1998;47:1570–1577.

    Article  PubMed  CAS  Google Scholar 

  45. Vafiadis P, Bennett ST, Todd JA et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997;15:289–292.

    Article  PubMed  CAS  Google Scholar 

  46. Pugliese A, Zeller M, Fernandez Jr A et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 1997;15:293–297.

    Article  PubMed  CAS  Google Scholar 

  47. Kishimoto H, Sprent J. A defect in central tolerance in NOD mice. Nat Immunol 2001;2:1025–1031.

    Article  PubMed  CAS  Google Scholar 

  48. Lesage S, Hartley SB, Akkaraju S et al. Failure to censor forbidden clones of CD4 T cells in autoimmune diabetes. J Exp Med 2002;196:1175–1188.

    Article  PubMed  CAS  Google Scholar 

  49. Klein L, Klugmann M, Nave KA et al. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat Med 2000;6:56–61.

    Article  PubMed  CAS  Google Scholar 

  50. Anderson AC, Nicholson LB, Legge KL et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: Mechanisms of selection of the self-reactive repertoire. J Exp Med 2000;191:761–770.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wucherpfennig, K.W. (2006). HLA and Autoimmunity. In: Immunogenetics of Autoimmune Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39926-3_1

Download citation

Publish with us

Policies and ethics