
USING REJECTION METHODS IN A DSS
FOR PRODUCTION STRATEGIES

Massimiliano Caramia 1, Pasquale Carotenuto2

Stefano Giordane.4, Antonio Iovanella4

il.A.c. - C.N.R., Viale del Policlinico, 137, /-00161 Rome, Italy
caramia@iac.rm.cnr.it

21. T.I.A. - C.N.R., Via del Politecnico 1, 1-00133 Rome, Italy
carotenuto@disp.uniroma2.it

3Centro Interdip. "Vito Volterra" - Univ. of Rome "Tor Vergata ",
Via di Tor Vergata, 1-00133 Rome, 1taly, giordani@disp.uniroma2.it

4 Dip. Informatica Sistemi e Produzione - Univ. of Rome "Tor Vergata ",
Via del Politecnico 1, 1-00133 Rome, Italy, iovanella@disp.uniroma2.it

In this paper we face the problem arising in an enterprise that must decide
whether and when scheduling production orders in order to maximize the
production efficiency. In particular we developed an on-lille schedulillg
algorithm able to mallage such decisiolls. Computational results are provided
to show the performance ojthe algorithm.

1. INTRODUCTION

Today an increasing number of manufacturing enterprises must collaborate and
communicate with a large number of suppliers spread in large areas to design and
produce their products. The Information and Communication Technology gives an
effectiveness support to this activity, but a well suited decision support system is
also necessary to manage the supply chain with the final goal to increase the
enterprise production efficiency [6].

The problem we study is the following. Suppose that an enterprise receives
production orders continuously from the customers in an on-line fashion with the
over time paradigm [5], that means that the enterprise does not know anything in
advance about the requested orders until they arrive. Moreover, suppose that all the
orders must be dispatched before a deadline and have a time length equal to their
production time.

To produce what is ordered, the enterprise nee.ds production resources (say
machines) to be allocated to orders for certain times. In particular, we suppose that
the machines are linearly ordered and each order requires a certain number of
consecutive machines for a certain production time. Moreover, once an order is
scheduled it can not be preempted.

© Springer Science+Business Media New York 2002
V. Mařík et al. (eds.), Knowledge and Technology Integration in Production and Services

420 Balancing Knowledge and Technology in Manufacturing and Services

However, it is not sure that all the incoming orders can be scheduled. In fact, we
are in a twofold scenario: either the order can be scheduled within the deadline, or it
must be rejected as there is not enough space in the schedule.

In this paper we developed an on-line scheduling algorithm able to manage
decisions maximizing the production efficiency. Computational results are provided
to show the performance of the algorithm.

The remainder of the paper is organized as follows. Section 2 contains the
model; in Section 3 we sketch the on-line algorithm and in Section 4 computational
results are provided. Section 5 concludes the paper with some final remarks.

2. THE MODEL

We are given a set of H parallel identical machines arranged in a linear order, a time
limit Wand a set of orders (requests) J, with n = 111. Each request j E J requires hj

consecutive machines for a certain time Wj , and can not be preempted. This is a
special case of multiprocessor task scheduling problem with parallel identical
processors (see [1-4]).

The requests are presented one by one, and the requirement of each request
becomes available only when the request is presented. Each time a new request j is
presented we have to decide to reject it or to accept it. In the latter case, we have to
assign a subset of hj consecutive machines for the entire request duration Wj to j; this
is the same as assigning to j a free rectangular area Xj (of height hj and width Wj)

contained in the area A of height H and width W. Clearly, the areas assigned to
accepted requests have to be mutually disjoint.

Our objective is the maximization of the production efficiency index p, measured
as the ratio between the resources assigned to accepted orders and the maximum
assignable production capacity. In terms of the proposed model p is the ratio
between the size of the total assigned area and the minimum between the size of A
and the total size of the area required by the set of requests. Of course, p is in
between 0 and 1.

3. THE ON-LINE ALGORITHM

Without loss of generality, we consider the requests indexed according to the order
in which they are presented. Given a list L={ 1, 2, ... , n} of such requests, an
algorithm A considering L is said to be on-line if [2, 5]:

1. A considers requests in the order given by the list L;
2. A considers each request i without knowledge of any requestj, withj >

i;
3. A never reconsiders a request already considered.

The algorithm operates in n = 111 iterations, and during iteration (j) the request j is
considered (accepted or rejected) and a new (eventually empty) free sub-area Aj+l of
A is defined.

Using Rejection Modes in a DSS for Production Strategies 421

Let us consider iteration (j). Let A(i·l) be the non-assigned (free) area of A, and
{A (i-I) A (i-I)} . . fA(i-I) h . A (i-I) A (i-I) - t?l l'c ~ {I '} I , ... , j a partItion 0 , t at IS p n q - 10, lor P T q E , ... ,}

and 0 s=1 A/-I) = A(j-I), where each As(i-I) is a free rectangular area of A. See for
example Figure 1. Clearly, at the beginning, we have A I (0) = A (0) = A.

H

A I (3)

W

Figure 1 - Assigned and Free Rectangular Areas at the Beginning of Iteration (4)

The requestj is accepted if there is a free area AkU-I) E (AIU-I), ... , All)} that may
satisfy the requirement ofj, that is both. WkU-1) ~ Wj and HkU-I) ~ hj' with WkU-I) being
the width and HkU-I) the height of AkU-I), respectively, otherwise j is rejected. In
particular, if j is accepted let AkU-I) be the smaller (in terms of size) free area
satisfying the requirement of j.

Whenj is accepted (s.ee Figure 2), a sub-area Xj (of height h j and width Wj) in the
north-west comer of AkU-I) is assigned to j, leaving two free rectangular sub-areas,
namely Ak U) and A j+1 V\ of Ak (i-I).

In particUlar, let AkV) = Ak(i-I) \ MtCt) and Aj+IV) = M/J) \ K, with MkV) of size mkU) =
min{w- Hk(j-I), hj Wk(i-I)} be the rectangular sub-area of Ak(j-{) located on the west side
of Ak (j-1) if mk v) = Wj Hk (i-I) otherwise in the north side; with this choice we have Ak v)
2: Aj +1 v), and the k-th free rectangular area Ak area is reduced by a minimal amount. If
j is rejected, we consider Ak Ct) = Ak (i-I) and Aj +1 (j) = 0.

The value of the solution found by the on-line algorithm is
n

W H - L (Ws (n) H s (II))

s=1 p=--------
II

min{WH, L W j h j }

j~1

422 Balancing Knowledge and Technology in Manufacturing and Services

A (j)
j+l

H /t.U-I)

Figure 2 - Accepting Requestj.

4. COMPUTATIONAL RESULTS

4.1 General

The algorithm was tested on randomly generated instances with n = 10, 20, 50 and
100 order requests getting a total number of 4 classes of test cases. For each class we
have considered different test cases according to different choices of two
parameters, say Wmax and hmax, being the maximum time that can be associated with a
request, and the maximum number of parallel contiguous machines for a request,
respectively, and different areas A; in particular, we have considered hmax = 5, 10, 15
and Wmax = 5, 10, 15, and 3 different areas A with the following value for the height
H and the width W: (H, W) = {(15, 20), (20, 30), (25, 50)}, for a total number of 27
test cases for each class. For each one of the 108 different test cases we randomly
generated ten instances where the request time Wj and number of machines hj

required by a request j are uniformly distributed in the intervals [I, wmax) and [1,
hmax), respectively.

The algorithm and the instance generator have been implemented in the C
language, compiled with the GNU CC 2.8.0 with the -03 option and tested on a PC
Pentium 600 MHz with Linux as.

4.2 The Data Comparisons

In Figures 3-5 we summarize average results of the efficiency index p. It can be
noted that if we have a small number of requests but with the longest duration and
highest resource requirements the algorithm performs the lower values. As soon as
the requests are small in the sense of the duration and/or number of resources
required the efficiency reach a value almost one. This is due to the chance the
algorithm has to allocate resources to "small" requests.

Using Rejection Modes in a DSS for Production Strategies

1.2

0.8

0.6

0.4

0.2

o
5
5

10
5

15
5

Efficiency for H = 15, W = 20

5
10

10
10

15
10

5
IS

1-

10
IS

15
IS

Figure 3 - Efficiency for H = 15 and W = 20.

.n = 10

On =20

On = 50 .n = 100

423

For the sake of completeness, we report also in Tables 1 and 2 the complete
results for the cases (W = 15, H = 20, n = 10) and (W = 15, H = 20, n = 20),
respectively, which are the cases where we obtained the worst results. In those
tables, the first column is the maximum number of resources required by a request,
the second column is the maximum time, the third the number of the average
rejected requests, and the last three columns are the minimum value of P, say Pmio.
the average values of P, say Pave, and the maximum value of P, say Pmaxo respectively,
taken over ten different instances.

424 Balancing Knowledge and Technology in Manufacturing and Services

Efficiency for H = 20, W = 30

1,2

--

0,8

0,6

0,4

0,2

o , ~

1,2

1

0,8

0,6

0,4

0,2 -

0

5
5

5
5

10
5

IS
5

5
10

10
\0

15
10

5
15

10
15

15
15

Figure 4 - Efficiency for H = 20 and W = 30,

Efficiency for H = 25, W = 50

-
I

,
- - -

• .
-

,

- - - -

- - - -

' r - ,- , ~ I

10 15 5 10 15 5 10 15
5 5 10 10 10 15 15 15

Figure 5 - Efficiency for H = 20 and W = 30

,

. n", 10

O n = 20

O n",50 .n = 100 -

. n = 10

on= 20

on ", 50

. n ", 100

wn1ax

hmax

Using Rejection Modes in a DSS for Production Strategies 425

Table 1 - Results for W = 15, H = 20 and n = 10
hmax Wmax Rejected PmJn Pave P_max

5 5 0.0 1.000 1.000 1.000
5 10 0.0 1.000 1.000 1.000
5 15 1.0 0.911 1.000 1.000
10 5 0.0 1.000 1.000 1.000
10 10 1.5 0.623 0.923 1.000
10 15 3.0 0.731 0.822 0.913
15 5 0.5 0.935 1.000 1.000
15 10 3.4 0.547 0.561 0.570
15 15 6.4 0.637 0.665 0.780

Table 2 - Results for W = 15, H = 20 and n = 20
hmax Wmax Rejected Pmin Pave Pmax

5 5 0.0 1.000 1.000 1.000
5 10 2.7 0.680 0.790 1.000
5 15 5.8 0.687 0.731 0.767
10 5 2.3 0.833 0.891 0.937
10 10 6.0 0.783 0.829 0.937
10 15 9.2 0.763 0.776 0.807
15 5 7.2 0.797 0.832 0.840
15 10 12.6 0.643 0.797 0.940
15 15 14.5 0.863 0.884 0.947

The worst results are obtained for the cases (hmax = 15, Wmax = 10, n = 10) and
(hmax = 15, Wmax = 15, n = 10), both in terms of number of rejected requests and
efficiency. This is due to the fact that in these cases we have to process requests
requiring almost the whole production capacity. A similar situation occurs for the
cases (hmax = 10, Wmax = 15, n = 20) and (hmax = 15, Wmax = 15, n = 20), even though
the efficiency is higher with respect to the previous two cases with n = 10; this can
be justified because with n = 20 we have more chances to efficiently use the whole
production capacity. As one can expect the worst cases to deal with are those ones
with hmax and/or Wmax values close to Hand W, respectively; indeed, in this cases we
could have a very small chance to fit a request whose size is very close to the size of
the whole (available) area A, especially if small requests have been accepted before
implying a reduction on the size of the available areas. Nevertheless, the algorithm
seems to perform well providing almost always solutions with efficiency value p
greater than 0.8.

5. CONCLUSIONS

In this paper, we present a very simple on-line algorithm for scheduling production
requests able to accept or reject incoming requests to maximize production

426 Balancing Knowledge and Technology in Manufacturing and Services

efficiency. We performed a wide computational analysis showing the behavior of
the proposed algorithm. Performance results show that the on-line algorithm
provides good solutions in almost all the tested cases.

6. REFERENCES

1. Brucker P. Scheduling Algorithms, Springer-Verlag, Berlin, 1995.
2. Cararnia M., Dell'OImo P., Iovanella A. On Line Algorithms for Multiprocessor Task Scheduling.

Foundations of Computing and Decision Science, 2001, 26 (3),197-214.
3. Dell'Olmo P., Giordani S., Speranza MG. An Approximation Result for a Duo-processor Task

Scheduling Problem. Information Processing Letters, 1997,61,195-200.
4. Drozdowsky M. Scheduling Multiprocessor Task. An Overview. European Journal of Operations

Research 1996,94: 215-230.
5. Fiat A., Woeginger GJ. Online Algorithms. LNCS State of the Art Survey, Springer-Verlag,

Berlin, 1998.
6. Shapiro JF. Modeling the Supply Chain. Duxbury Press, 2000.

