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In this paper we face the problem arising in an enterprise that must decide 
whether and when scheduling production orders in order to maximize the 
production efficiency. In particular we developed an on-lille schedulillg 
algorithm able to mallage such decisiolls. Computational results are provided 
to show the performance ojthe algorithm. 

1. INTRODUCTION 

Today an increasing number of manufacturing enterprises must collaborate and 
communicate with a large number of suppliers spread in large areas to design and 
produce their products. The Information and Communication Technology gives an 
effectiveness support to this activity, but a well suited decision support system is 
also necessary to manage the supply chain with the final goal to increase the 
enterprise production efficiency [6]. 

The problem we study is the following. Suppose that an enterprise receives 
production orders continuously from the customers in an on-line fashion with the 
over time paradigm [5], that means that the enterprise does not know anything in 
advance about the requested orders until they arrive. Moreover, suppose that all the 
orders must be dispatched before a deadline and have a time length equal to their 
production time. 

To produce what is ordered, the enterprise nee.ds production resources (say 
machines) to be allocated to orders for certain times. In particular, we suppose that 
the machines are linearly ordered and each order requires a certain number of 
consecutive machines for a certain production time. Moreover, once an order is 
scheduled it can not be preempted. 
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However, it is not sure that all the incoming orders can be scheduled. In fact, we 
are in a twofold scenario: either the order can be scheduled within the deadline, or it 
must be rejected as there is not enough space in the schedule. 

In this paper we developed an on-line scheduling algorithm able to manage 
decisions maximizing the production efficiency. Computational results are provided 
to show the performance of the algorithm. 

The remainder of the paper is organized as follows. Section 2 contains the 
model; in Section 3 we sketch the on-line algorithm and in Section 4 computational 
results are provided. Section 5 concludes the paper with some final remarks. 

2. THE MODEL 

We are given a set of H parallel identical machines arranged in a linear order, a time 
limit Wand a set of orders (requests) J, with n = 111. Each request j E J requires hj 

consecutive machines for a certain time Wj , and can not be preempted. This is a 
special case of multiprocessor task scheduling problem with parallel identical 
processors (see [1-4]). 

The requests are presented one by one, and the requirement of each request 
becomes available only when the request is presented. Each time a new request j is 
presented we have to decide to reject it or to accept it. In the latter case, we have to 
assign a subset of hj consecutive machines for the entire request duration Wj to j; this 
is the same as assigning to j a free rectangular area Xj (of height hj and width Wj) 

contained in the area A of height H and width W. Clearly, the areas assigned to 
accepted requests have to be mutually disjoint. 

Our objective is the maximization of the production efficiency index p, measured 
as the ratio between the resources assigned to accepted orders and the maximum 
assignable production capacity. In terms of the proposed model p is the ratio 
between the size of the total assigned area and the minimum between the size of A 
and the total size of the area required by the set of requests. Of course, p is in 
between 0 and 1. 

3. THE ON-LINE ALGORITHM 

Without loss of generality, we consider the requests indexed according to the order 
in which they are presented. Given a list L={ 1, 2, ... , n} of such requests, an 
algorithm A considering L is said to be on-line if [2, 5]: 

1. A considers requests in the order given by the list L; 
2. A considers each request i without knowledge of any requestj, withj > 

i; 
3. A never reconsiders a request already considered. 

The algorithm operates in n = 111 iterations, and during iteration (j) the request j is 
considered (accepted or rejected) and a new (eventually empty) free sub-area Aj+l of 
A is defined. 



Using Rejection Modes in a DSS for Production Strategies 421 

Let us consider iteration (j). Let A(i·l) be the non-assigned (free) area of A, and 
{A (i-I) A (i-I)} . . fA(i-I) h . A (i-I) A (i-I) - t?l l'c ~ {I '} I , ... , j a partItion 0 , t at IS p n q - 10, lor P T q E , ... ,} 

and 0 s=1 A/-I) = A(j-I), where each As(i-I) is a free rectangular area of A. See for 
example Figure 1. Clearly, at the beginning, we have A I (0) = A (0) = A. 

H 

A I (3) 

W 

Figure 1 - Assigned and Free Rectangular Areas at the Beginning of Iteration (4) 

The requestj is accepted if there is a free area AkU-I) E (AIU-I), ... , All)} that may 
satisfy the requirement ofj, that is both. WkU-1) ~ Wj and HkU-I) ~ hj' with WkU-I) being 
the width and HkU-I) the height of AkU-I), respectively, otherwise j is rejected. In 
particular, if j is accepted let AkU-I) be the smaller (in terms of size) free area 
satisfying the requirement of j. 

Whenj is accepted (s.ee Figure 2), a sub-area Xj (of height h j and width Wj) in the 
north-west comer of AkU-I) is assigned to j, leaving two free rectangular sub-areas, 
namely Ak U) and A j+1 V\ of Ak (i-I). 

In particUlar, let AkV) = Ak(i-I) \ MtCt) and Aj+IV) = M/J) \ K, with MkV) of size mkU) = 
min{w- Hk(j-I), hj Wk(i-I)} be the rectangular sub-area of Ak(j-{) located on the west side 
of Ak (j-1) if mk v) = Wj Hk (i-I) otherwise in the north side; with this choice we have Ak v) 
2: Aj +1 v), and the k-th free rectangular area Ak area is reduced by a minimal amount. If 
j is rejected, we consider Ak Ct) = Ak (i-I) and Aj +1 (j) = 0. 

The value of the solution found by the on-line algorithm is 
n 

W H - L (Ws (n) H s (II) ) 

s=1 p=--------
II 

min{WH, L W j h j } 

j~1 
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A (j) 
j+l 

H /t.U-I ) 

Figure 2 - Accepting Requestj. 

4. COMPUTATIONAL RESULTS 

4.1 General 

The algorithm was tested on randomly generated instances with n = 10, 20, 50 and 
100 order requests getting a total number of 4 classes of test cases. For each class we 
have considered different test cases according to different choices of two 
parameters, say Wmax and hmax, being the maximum time that can be associated with a 
request, and the maximum number of parallel contiguous machines for a request, 
respectively, and different areas A; in particular, we have considered hmax = 5, 10, 15 
and Wmax = 5, 10, 15, and 3 different areas A with the following value for the height 
H and the width W: (H, W) = {(15, 20), (20, 30), (25, 50)}, for a total number of 27 
test cases for each class. For each one of the 108 different test cases we randomly 
generated ten instances where the request time Wj and number of machines hj 

required by a request j are uniformly distributed in the intervals [I, wmax) and [1, 
hmax), respectively. 

The algorithm and the instance generator have been implemented in the C 
language, compiled with the GNU CC 2.8.0 with the -03 option and tested on a PC 
Pentium 600 MHz with Linux as. 

4.2 The Data Comparisons 

In Figures 3-5 we summarize average results of the efficiency index p. It can be 
noted that if we have a small number of requests but with the longest duration and 
highest resource requirements the algorithm performs the lower values. As soon as 
the requests are small in the sense of the duration and/or number of resources 
required the efficiency reach a value almost one. This is due to the chance the 
algorithm has to allocate resources to "small" requests. 
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Figure 3 - Efficiency for H = 15 and W = 20. 
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For the sake of completeness, we report also in Tables 1 and 2 the complete 
results for the cases (W = 15, H = 20, n = 10) and (W = 15, H = 20, n = 20), 
respectively, which are the cases where we obtained the worst results. In those 
tables, the first column is the maximum number of resources required by a request, 
the second column is the maximum time, the third the number of the average 
rejected requests, and the last three columns are the minimum value of P, say Pmio. 
the average values of P, say Pave, and the maximum value of P, say Pmaxo respectively, 
taken over ten different instances. 
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Figure 4 - Efficiency for H = 20 and W = 30, 
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Table 1 - Results for W = 15, H = 20 and n = 10 
hmax Wmax Rejected PmJn Pave P_max 

5 5 0.0 1.000 1.000 1.000 
5 10 0.0 1.000 1.000 1.000 
5 15 1.0 0.911 1.000 1.000 
10 5 0.0 1.000 1.000 1.000 
10 10 1.5 0.623 0.923 1.000 
10 15 3.0 0.731 0.822 0.913 
15 5 0.5 0.935 1.000 1.000 
15 10 3.4 0.547 0.561 0.570 
15 15 6.4 0.637 0.665 0.780 

Table 2 - Results for W = 15, H = 20 and n = 20 
hmax Wmax Rejected Pmin Pave Pmax 

5 5 0.0 1.000 1.000 1.000 
5 10 2.7 0.680 0.790 1.000 
5 15 5.8 0.687 0.731 0.767 
10 5 2.3 0.833 0.891 0.937 
10 10 6.0 0.783 0.829 0.937 
10 15 9.2 0.763 0.776 0.807 
15 5 7.2 0.797 0.832 0.840 
15 10 12.6 0.643 0.797 0.940 
15 15 14.5 0.863 0.884 0.947 

The worst results are obtained for the cases (hmax = 15, Wmax = 10, n = 10) and 
(hmax = 15, Wmax = 15, n = 10), both in terms of number of rejected requests and 
efficiency. This is due to the fact that in these cases we have to process requests 
requiring almost the whole production capacity. A similar situation occurs for the 
cases (hmax = 10, Wmax = 15, n = 20) and (hmax = 15, Wmax = 15, n = 20), even though 
the efficiency is higher with respect to the previous two cases with n = 10; this can 
be justified because with n = 20 we have more chances to efficiently use the whole 
production capacity. As one can expect the worst cases to deal with are those ones 
with hmax and/or Wmax values close to Hand W, respectively; indeed, in this cases we 
could have a very small chance to fit a request whose size is very close to the size of 
the whole (available) area A, especially if small requests have been accepted before 
implying a reduction on the size of the available areas. Nevertheless, the algorithm 
seems to perform well providing almost always solutions with efficiency value p 
greater than 0.8. 

5. CONCLUSIONS 

In this paper, we present a very simple on-line algorithm for scheduling production 
requests able to accept or reject incoming requests to maximize production 
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efficiency. We performed a wide computational analysis showing the behavior of 
the proposed algorithm. Performance results show that the on-line algorithm 
provides good solutions in almost all the tested cases. 
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