Skip to main content

Molecular Mechanisms for Early Brain Injury After Subarachnoid Hemorrhage

  • Reference work entry
  • First Online:
Book cover Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

An increasing volume of experimental and clinical data indicates that early brain injury after initial bleeding largely contributes to unfavorable outcome and mortality after subarachnoid hemorrhage (SAH). Patients who recover from cerebral ischemia caused by intracranial pressure (ICP) raised over diastolic blood pressure suffer from severe injury to the brain tissues and cerebral microvasculature. This chapter aims to review: (1) pathophysiological factors and molecular agents acting on cerebral and vascular tissues after initial bleeding; (2) molecular responses to the early intracranial phenomena in SAH; (3) molecular signaling that contributes to the early development of pathological sequelae of SAH, including blood–brain barrier rupture, brain edema, and apoptosis; and (4) molecular mechanisms of cell death in the brain occurring early after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

20‐HETE:

20‐hydroxyeiscosatetraenoic acid

5HT1B :

5‐hydroxytryptamine 1B

AMPA:

alpha‐amino‐3‐hydroxy‐5‐methylisoxasole‐4‐propionate

AQP1:

aquaporin‐1

ATP:

adenosine triphosphate

BBB:

blood–brain barrier

BNIP3:

E1B 19K/Bcl‐2‐binding protein Nip3

CBF:

cerebral blood flow

cGMP:

cyclic guanosine monophosphate

CGRP:

calcitonin gene‐related peptide

COX‐2:

cyclooxygenase‐2

CPP:

cerebral perfusion pressure

CSF:

cerebrospinal fluid

DAG:

diacylglycerol

ERK1/2:

extracellular signal‐regulated kinase 1/2

ET‐1:

endothelin‐1

FADD:

Fas‐associated protein with death domain

GPCR:

G protein–coupled receptors

GSH‐Px:

glutathione peroxidase

HIF‐1:

hypoxia‐inducible factor 1

ICP:

intracranial pressure

IL‐1β:

interleukin‐1β

IL‐6:

interleukin‐6

iNOS:

inducible nitric oxide synthase

JNK:

c‐Jun N‐terminal kinase

LPA:

lysophosphatidic acid

LTC4:

leukotriene C4

MAPK:

mitogen‐activated protein kinase

MEK:

mitogen‐activated protein kinase

MMP‐9:

matrix metalloproteinase‐9

NFκB:

Nuclear Factor kappa B

NIX:

Nip3‐like protein X

NMDA:

N‐methyl‐D‐aspartate

NO:

nitric oxide

NOS:

nitric oxide synthase

PARP:

poly(ADP‐ribose) polymerase

PDEV:

phosphodiesterase enzyme type V

PDGF:

platelet‐derived growth factor

PG6‐keto F1α:

6‐keto‐prostaglandin F1α

PGE2:

prostaglandin E2

PGF2α:

prostaglandin F2α

PI3K:

phosphatidylinositol‐3 kinase

PKC:

protein kinase C

PLC:

phospholipase C

PP1:

Src‐family tyrosine kinase inhibitor

PTK:

nonreceptor protein tyrosine kinase

RIP1:

receptor-interacting protein-1

SAH:

subarachnoid hemorrhage

SH2:

Src‐homology 2

SOD:

superoxide dismutase

SP:

substance P

TNF‐α:

tumor necrosis factor α

TRAF:

TNF receptor‐associated factor

TUNEL:

terminal deoxynucleotidyl transferase‐mediated dUTP nick end labeling

TXA2:

thromboxane A2

TXB2:

thromboxane B2

VEGF:

vascular endothelial growth factor

References

  • Abbott NJ. 2000. Inflammatory mediators and modulation of blood‐brain barrier permeability. Cell Mol Neurobiol 20 (2): 131–147.

    Article  CAS  PubMed  Google Scholar 

  • Abbracchio MP, Burnstock G. 1998. Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78 (2): 113–145.

    Article  CAS  PubMed  Google Scholar 

  • Akin E, Clower B, Tibbs R, Tang J, Zhang J. 2002. Bilirubin produces apoptosis in cultured bovine brain endothelial cells. Brain Res 931 (2): 168–175.

    Article  CAS  PubMed  Google Scholar 

  • Allan SM, Rothwell NJ. 2001. Cytokines and acute neurodegeneration. Nat Rev Neurosci 2 (10): 734–744.

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Williams R, Zhang JH. 2001. Mechanism of hemolysate‐induced [Ca2+]i elevation in cultured fibroblasts. Neurol Res 23 (4): 367–373.

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Zubkov AY, Ross IB, Zhang JH. 2002. Therapeutic effect of caspase inhibitors in the prevention of apoptosis and reversal of chronic cerebral vasospasm. J Clin Neurosci 9 (6): 672–677.

    Article  CAS  PubMed  Google Scholar 

  • Arai T, Takeyama N, Tanaka T. 1999. Glutathione monoethyl ester and inhibition of the oxyhemoglobin‐induced increase in cytosolic calcium in cultured smooth‐muscle cells. J Neurosurg 90 (3): 527–532.

    Article  CAS  PubMed  Google Scholar 

  • Badaut J, Brunet JF, Grollimund L, Hamou MF, Magistretti PJ, et al. 2003. Aquaporin 1 and aquaporin 4 expression in human brain after subarachnoid hemorrhage and in peritumoral tissue. Acta Neurochir Suppl 86: 495–498.

    CAS  PubMed  Google Scholar 

  • Badaut J, Lasbennes F, Magistretti PJ, Regli L. 2002. Aquaporins in brain: distribution, physiology, pathophysiology. J Cereb Blood Flow Metab 22 (4): 367–378.

    Article  CAS  PubMed  Google Scholar 

  • Bederson JB, Germano IM, Guarino L. 1995. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 26 (6): 1086–1091.

    Article  CAS  PubMed  Google Scholar 

  • Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, et al. 1998. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery 42 (2): 352–360.

    Article  CAS  PubMed  Google Scholar 

  • Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR. 1999. Induction of hypoxia‐inducible factor‐1 (HIF‐1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11 (12): 4159–4170.

    Article  CAS  PubMed  Google Scholar 

  • Berra E, Pages G, Pouyssegur J. 2000. MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev 19 (1–2): 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Borel CO, McKee A, Parra A, Haglund MM, Solan A, et al. 2003. Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke 34 (2): 427–433.

    Article  CAS  PubMed  Google Scholar 

  • Broderick JP. 1993. Stroke trends in Rochester, Minnesota, during 1945 to 1984. Ann Epidemiol 3 (5): 476–479.

    Article  CAS  PubMed  Google Scholar 

  • Broderick JP, Brott T, Tomsick T, Huster G, Miller R. 1992. The risk of subarachnoid and intracerebral hemorrhages in blacks as compared with whites. N Engl J Med 326 (11): 733–736.

    Article  CAS  PubMed  Google Scholar 

  • Brune B, von Knethen A, Sandau KB. 2001. Transcription factors p53 and HIF‐1alpha as targets of nitric oxide. Cell Signal 13 (8): 525–533.

    Article  CAS  PubMed  Google Scholar 

  • Burlacu A, Jinga V, Gafencu AV, Simionescu M. 2001. Severity of oxidative stress generates different mechanisms of endothelial cell death. Cell Tissue Res 306 (3): 409–416.

    Article  CAS  PubMed  Google Scholar 

  • Cambj‐Sapunar L, Yu M, Harder DR, Roman RJ. 2003. Contribution of 5–hydroxytryptamine1B receptors and 20–hydroxyeiscosatetraenoic acid to fall in cerebral blood flow after subarachnoid hemorrhage. Stroke 34 (5): 1269–1275.

    Article  PubMed  Google Scholar 

  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, et al. 1998. Role of HIF‐1alpha in hypoxia‐mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394 (6692): 485–490.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter RC, Miao L, Miyagi Y, Bengten E, Zhang JH. 2001. Altered expression of P(2) receptor mRNAs in the basilar artery in a rat double hemorrhage model. Stroke 32 (2): 516–522.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti S, Chakraborti T. 1998. Oxidant‐mediated activation of mitogen‐activated protein kinases and nuclear transcription factors in the cardiovascular system: a brief overview. Cell Signal 10 (10): 675–683.

    Article  CAS  PubMed  Google Scholar 

  • Chavez JC, LaManna JC. 2002. Activation of hypoxia‐inducible factor‐1 in the rat cerebral cortex after transient global ischemia: potential role of insulin‐like growth factor‐1. J Neurosci 22 (20): 8922–8931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow J, Ogunshola O, Fan SY, Li Y, Ment LR, et al. 2001. Astrocyte‐derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro. Brain Res Dev Brain Res 130: 123–132.

    Article  CAS  PubMed  Google Scholar 

  • Cook DA. 1984. The pharmacology of cerebral vasospasm. Pharmacology 29 (1): 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Cook DA. 1995. Mechanisms of cerebral vasospasm in subarachnoid haemorrhage. Pharmacol Ther 66 (2): 259–284.

    Article  CAS  PubMed  Google Scholar 

  • Davis RP, Zappulla RA, Spigelman MK, Feuer EJ, Malis LI, et al. 1986. The protective effect of experimental subarachnoid haemorrhage on sodium dehydrocholate‐induced blood‐brain barrier disruption. Acta Neurochir (Wien) 83 (3–4): 138–143.

    Article  CAS  Google Scholar 

  • Dietrich HH, Dacey RG Jr. 2000. Molecular keys to the problems of cerebral vasospasm. Neurosurgery 46 (3): 517–530.

    Article  CAS  PubMed  Google Scholar 

  • Dijkhuizen RM, Asahi M, Wu O, Rosen BR, Lo EH. 2002. Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissue plasminogen activator treatment in a rat embolic stroke model. Stroke 33 (8): 2100–2104.

    Article  CAS  PubMed  Google Scholar 

  • Doczi T. 1985. The pathogenetic and prognostic significance of blood‐brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies. Acta Neurochir (Wien) 77 (3–4): 110–132.

    Article  CAS  Google Scholar 

  • Doczi T, Joo F, Adam G, Bozoky B, Szerdahelyi P. 1986. Blood‐brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery 18 (6): 733–739.

    Article  CAS  PubMed  Google Scholar 

  • Doczi TP, Joo F, Balas I. 1995. Atrial natriuretic peptide (ANP) attenuates brain oedema accompanying experimental subarachnoid haemorrhage. Acta Neurochir (Wien) 132 (1–3): 87–91.

    Article  CAS  Google Scholar 

  • Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, et al. 2003. Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery 53 (1): 123–133.

    Article  PubMed  Google Scholar 

  • Duyndam MC, Hulscher ST, van der, E, Wall Pinedo HM, et al. 2003. Evidence for a role of p38 kinase in hypoxia‐inducible factor 1–independent induction of vascular endothelial growth factor expression by sodium arsenite. J Biol Chem 278 (9): 6885–6895.

    Article  CAS  PubMed  Google Scholar 

  • Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, et al. 1999. Selective requirement for Src kinases during VEGF‐induced angiogenesis and vascular permeability. Mol Cell 4 (6): 915–924.

    Article  CAS  PubMed  Google Scholar 

  • Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, et al. 2001. Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry 70 (4): 534–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Force T, Bonventre JV. 1998. Growth factors and mitogen‐activated protein kinases. Hypertension 31 (1 Pt. 2): 152–161.

    Article  CAS  PubMed  Google Scholar 

  • Force T, Kyriakis JM, Avruch J, Bonventre JV. 1991. Endothelin, vasopressin, angiotensin II enhance tyrosine phosphorylation by protein kinase C‐dependent and ‐independent pathways in glomerular mesangial cells. J Biol Chem 266 (10): 6650–6656.

    Article  CAS  PubMed  Google Scholar 

  • Fornezza U, Carraro R, Demo P, Zamperetti N, Volpin L, et al. 1990. The transcranial Doppler ultrasonography in the evaluation of vasospasm and of intracranial hypertension after subarachnoid hemorrhage. Agressologie 31 (5): 259–261.

    CAS  PubMed  Google Scholar 

  • Foschi M, Chari S, Dunn MJ, Sorokin A. 1997. Biphasic activation of p21ras by endothelin‐1 sequentially activates the ERK cascade and phosphatidylinositol 3–kinase. EMBO J 16 (21): 6439–6451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujikawa H, Tani E, Yamaura I, Ozaki I, Miyaji K, et al. 1999. Activation of protein kinases in canine basilar artery in vasospasm. J Cereb Blood Flow Metab 19 (1): 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S, Hashimoto N, Naritomi H, Nagata I, Nozaki K, et al. 2000. Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 101 (21): 2532–2538.

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara T, Douville CM, Eliott JP, Newell DW, Winn HR. 1998. Relationship between intracranial pressure and the development of vasospasm after aneurysmal subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 38 (11): 710–715.

    Article  CAS  Google Scholar 

  • Gaetani P, Lombardi D. 1992. Brain damage following subarachnoid hemorrhage: the imbalance between anti‐oxidant systems and lipid peroxidative processes. J Neurosurg Sci 36 (1): 1–10.

    CAS  PubMed  Google Scholar 

  • Gaetani P, Tartara F, Pignatti P, Tancioni F, Baena R, et al. 1998. Cisternal CSF levels of cytokines after subarachnoid hemorrhage. Neurol Res 20 (4): 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Gao N, Jiang BH, Leonard SS, Corum L, Zhang Z, et al. 2002. p38 Signaling‐mediated hypoxia‐inducible factor 1alpha and vascular endothelial growth factor induction by Cr(VI) in DU145 human prostate carcinoma cells. J Biol Chem 277 (47): 45041–45048.

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Yokota R, Tang S, Ashton AW, Ware JA. 2000. Reversal of angiogenesis in vitro, induction of apoptosis, inhibition of AKT phosphorylation in endothelial cells by thromboxane A(2). Circ Res 87 (9): 739–745.

    Article  CAS  PubMed  Google Scholar 

  • Garcia JH. 1988. Morphology of global cerebral ischemia. Crit Care Med 16 (10): 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Germano A, D'Avella D, Imperatore C, Caruso G, Tomasello F. 2000. Time‐course of blood‐brain barrier permeability changes after experimental subarachnoid haemorrhage. Acta Neurochir (Wien) 142 (5): 575–580.

    Article  CAS  Google Scholar 

  • Gerthoffer WT, Singer CA. 2003. MAPK regulation of gene expression in airway smooth muscle. Respir Physiol Neurobiol 137 (2–3): 237–250.

    Article  CAS  PubMed  Google Scholar 

  • Gimenez F, Barraud de Lagerie S, Fernandez C, Pino P, Mazier D. 2003. Tumor necrosis factor alpha in the pathogenesis of cerebral malaria. Cell Mol Life Sci 60 (8): 1623–1635.

    Article  CAS  PubMed  Google Scholar 

  • Goda N, Dozier SJ, Johnson RS. 2003. HIF‐1 in Cell Cycle Regulation, Apoptosis, Tumor Progression. Antioxid Redox Signal 5 (4): 467–473.

    Article  CAS  PubMed  Google Scholar 

  • Gruber A, Rossler K, Graninger W, Donner A, Illievich MU, et al. 2000. Ventricular cerebrospinal fluid and serum concentrations of sTNFR‐I, IL‐1ra, IL‐6 after aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol 12 (4): 297–306.

    Article  CAS  PubMed  Google Scholar 

  • Guan YY, Weir BK, Marton LS, Macdonald RL, Zhang H. 1998. Effects of erythrocyte lysate of different incubation times on intracellular free calcium in rat basilar artery smooth‐muscle cells. J Neurosurg 89 (6): 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  • Halterman MW, Federoff HJ. 1999. HIF‐1alpha and p53 promote hypoxia‐induced delayed neuronal death in models of CNS ischemia. Exp Neurol 159 (1): 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Hamann GF, del Zoppo GJ, von Kummer R. 1999. Hemorrhagic transformation of cerebral infarction‐possible mechanisms. Thromb Haemost 82 (Suppl. 1): 92–94.

    PubMed  Google Scholar 

  • Hayashi M, Marukawa S, Fujii H, Kitano T, Kobayashi H, et al. 1977. Intracranial hypertension in patients with ruptured intracranial aneurysm. J Neurosurg 46 (5): 584–590.

    Article  CAS  PubMed  Google Scholar 

  • Hirashima Y, Nakamura S, Endo S, Kuwayama N, Naruse Y, et al. 1997. Elevation of platelet activating factor, inflammatory cytokines, coagulation factors in the internal jugular vein of patients with subarachnoid hemorrhage. Neurochem Res 22 (10): 1249–1255.

    Article  CAS  PubMed  Google Scholar 

  • Holmin S, Mathiesen T. 2000. Intracerebral administration of interleukin‐1beta and induction of inflammation, apoptosis, vasogenic edema. J Neurosurg 92 (1): 108–120.

    Article  CAS  PubMed  Google Scholar 

  • Hong KW, Shin HK, Kim CD, Lee WS, Rhim BY. 2001. Restoration of vasodilation and CBF autoregulation by genistein in rat pial artery after brain injury. Am J Physiol Heart Circ Physiol 281 (1): H308–H315.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Ikeda T, Onizuka T, Terashi H, Fukuda T. 2001. C‐type natriuretic peptide concentrations in the plasma and cerebrospinal fluid of patients with subarachnoid hemorrhage. Crit Care 5 (1): 37–40.

    Article  CAS  PubMed  Google Scholar 

  • Imperatore C, Germano A, D'Avella D, Tomasello F, Costa G. 2000. Effects of the radical scavenger AVS on behavioral and BBB changes after experimental subarachnoid hemorrhage. Life Sci 66 (9): 779–790.

    Article  CAS  PubMed  Google Scholar 

  • Inage YW, Itoh M, Wada K, Hoshika A, Takashima S. 2000. Glutamate transporters in neonatal cerebellar subarachnoid hemorrhage. Pediatr Neurol 23 (1): 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Inamasu J, Nakamura Y, Saito R, Kuroshima Y, Mayanagi K, et al. 2002. Normokalemia and hyperglycemia in subarachnoid hemorrhage patients resuscitated from prehospital cardiopulmonary arrest. Resuscitation 54 (3): 255–258.

    Article  PubMed  Google Scholar 

  • Irving EA, Bamford M. 2002. Role of mitogen‐ and stress‐activated kinases in ischemic injury. J Cereb Blood Flow Metab 22 (6): 631–647.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Wu J, Keep RF, Hua Y, Hoff JT, et al. 2002. Hypoxia‐inducible factor‐1alpha accumulation in the brain after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 22 (6): 689–696.

    Article  CAS  PubMed  Google Scholar 

  • Jin KL, Mao XO, Nagayama T, Goldsmith PC, Greenberg DA. 2000. Induction of vascular endothelial growth factor and hypoxia‐inducible factor‐1alpha by global ischemia in rat brain. Neuroscience 99 (3): 577–585.

    Article  CAS  PubMed  Google Scholar 

  • Johshita H, Kassell NF, Sasaki T. 1990a. Blood‐brain barrier disturbance following subarachnoid hemorrhage in rabbits. Stroke 21 (7): 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  • Johshita H, Kassell NF, Sasaki T, Ogawa H. 1990b. Impaired capillary perfusion and brain edema following experimental subarachnoid hemorrhage: a morphometric study. J Neurosurg 73 (3): 410–417.

    Article  CAS  PubMed  Google Scholar 

  • Joo F, Klatzo I. 1989. Role of cerebral endothelium in brain oedema. Neurol Res 11 (2): 67–75.

    Article  CAS  PubMed  Google Scholar 

  • Josko J, Gwozdz B, Hendryk S, Jedrzejowska‐Szypulka H, Slowinski J, et al. 2001. Expression of vascular endothelial growth factor (VEGF) in rat brain after subarachnoid haemorrhage and endothelin receptor blockage with BQ‐123. Folia Neuropathol 39 (4): 243–251.

    CAS  PubMed  Google Scholar 

  • Kamiya K, Kuyama H, Symon L. 1983. An experimental study of the acute stage of subarachnoid hemorrhage. J Neurosurg 59 (6): 917–924.

    Article  CAS  PubMed  Google Scholar 

  • Kaptain GJ, Lanzino G, Kassell NF. 2000. Subarachnoid haemorrhage: epidemiology, risk factors, treatment options. Drugs Aging 17 (3): 183–199.

    Article  CAS  PubMed  Google Scholar 

  • Kassell NF, Sasaki T, Colohan AR, Nazar G. 1985. Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 16 (4): 562–572.

    Article  CAS  PubMed  Google Scholar 

  • Kempski O. 2001. Cerebral edema. Semin Nephrol 21 (3): 303–307.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Okuda Y, Kaito N, Abe T. 1995. Cytokine production in cerebrospinal fluid after subarachnoid haemorrhage. Neurol Res 17 (2): 106–108.

    Article  CAS  PubMed  Google Scholar 

  • Kim DE, Suh YS, Lee MS, Kim KY, Lee JH, et al. 2002. Vascular NAD(P)H oxidase triggers delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke 33 (11): 2687–2691.

    Article  CAS  PubMed  Google Scholar 

  • Kimura H, Gules I, Meguro T, Zhang JH. 2003. Cytotoxicity of cytokines in cerebral microvascular endothelial cell. Brain Res 990 (1–2): 148–156.

    Article  CAS  PubMed  Google Scholar 

  • Kissela BM, Sauerbeck L, Woo D, Khoury J, Carrozzella J, et al. 2002. Subarachnoid hemorrhage: a preventable disease with a heritable component. Stroke 33 (5): 1321–1326.

    Article  PubMed  Google Scholar 

  • Kobayashi H, Ide H, Handa Y, Aradachi H, Arai Y, et al. 1992. Effect of leukotriene antagonist on experimental delayed cerebral vasospasm. Neurosurgery 31 (3): 550–555.

    Article  CAS  PubMed  Google Scholar 

  • Kraus GE, Bucholz RD, Yoon KW, Knuepfer MM, Smith KR Jr. 1991. Cerebrospinal fluid endothelin‐1 and endothelin‐3 levels in normal and neurosurgical patients: a clinical study and literature review. Surg Neurol 35 (1): 20–29.

    Article  CAS  PubMed  Google Scholar 

  • Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. 2004. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 24: 916–925.

    Article  CAS  PubMed  Google Scholar 

  • Laher I, Zhang JH. 2001. Protein kinase C and cerebral vasospasm. J Cereb Blood Flow Metab 21 (8): 887–906.

    Article  CAS  PubMed  Google Scholar 

  • Lassegue B, Clempus RE. 2003. Vascular NAD(P)H oxidases: specific features, expression, regulation. Am J Physiol Regul Integr Comp Physiol 285 (2): R277–R297.

    Article  CAS  PubMed  Google Scholar 

  • Laszlo FA, Varga C, Doczi T. 1995. Cerebral oedema after subarachnoid haemorrhage. Pathogenetic significance of vasopressin. Acta Neurochir(Wien) 133 (3–4): 122–133.

    Article  CAS  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA. 2003. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4 (5): 399–415.

    Article  CAS  PubMed  Google Scholar 

  • Loetscher H, Niederhauser O, Kemp J, Gill R. 2001. Is caspase‐3 inhibition a valid therapeutic strategy in cerebral ischemia? Drug Discov Today 6 (13): 671–680.

    Article  CAS  PubMed  Google Scholar 

  • Macdonald RL, Weir BK. 1994. Cerebral vasospasm and free radicals. Free Radic Biol Med 16 (5): 633–643.

    Article  CAS  PubMed  Google Scholar 

  • Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, et al. 2000. Aquaporin‐4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6 (2): 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Mark KS, Trickler WJ, Miller DW. 2001. Tumor necrosis factor‐alpha induces cyclooxygenase‐2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther 297 (3): 1051–1058.

    CAS  PubMed  Google Scholar 

  • Martin LJ. 2001. Neuronal cell death in nervous system development, disease, injury (Review). Int J Mol Med 7 (5): 455–478.

    CAS  PubMed  Google Scholar 

  • Martinez‐Estrada OM, Rodriguez‐Millan E, Gonzalez‐De Vicente E, Reina M, Vilaro S, Fabre M. 2003. Erythropoietin protects the in vitro blood‐brain barrier against VEGF‐induced permeability. Eur J Neurosci 18 (9): 2538–2544.

    Article  PubMed  Google Scholar 

  • Marton LS, Weir BK, Zhang H. 1996. Tyrosine phosphorylation and [Ca2+]i elevation induced by hemolysate in bovine endothelial cells: implications for cerebral vasospasm. Neurol Res 18 (4): 349–353.

    Article  CAS  PubMed  Google Scholar 

  • Maruo N, Morita I, Shirao M, Murota S. 1992. IL‐6 increases endothelial permeability in vitro. Endocrinology 131 (2): 710–714.

    CAS  PubMed  Google Scholar 

  • Marzatico F, Gaetani P, Cafe C, Spanu G, Baena R. 1993. Antioxidant enzymatic activities after experimental subarachnoid hemorrhage in rats. Acta Neurol Scand 87 (1): 62–66.

    Article  CAS  PubMed  Google Scholar 

  • Marzatico F, Gaetani P, Silvani V, Lombardi D, Sinforiani E, et al. 1990. Experimental isobaric subarachnoid hemorrhage: regional mitochondrial function during the acute and late phase. Surg Neurol 34 (5): 294–300.

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen T, Andersson B, Loftenius A, von Holst H. 1993. Increased interleukin‐6 levels in cerebrospinal fluid following subarachnoid hemorrhage. J Neurosurg 78 (4): 562–567.

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen T, Edner G, Ulfarsson E, Andersson B. 1997. Cerebrospinal fluid interleukin‐1 receptor antagonist and tumor necrosis factor‐alpha following subarachnoid hemorrhage. J Neurosurg 87 (2): 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Matz PG, Copin JC, Chan PH. 2000a. Cell death after exposure to subarachnoid hemolysate correlates inversely with expression of CuZn‐superoxide dismutase. Stroke 31 (10): 2450–2459.

    Article  CAS  PubMed  Google Scholar 

  • Matz PG, Fujimura M, Chan PH. 2000b. Subarachnoid hemolysate produces DNA fragmentation in a pattern similar to apoptosis in mouse brain. Brain Res 858 (2): 312–319.

    Article  CAS  PubMed  Google Scholar 

  • Matz PG, Fujimura M, Lewen A, Morita‐Fujimura Y, Chan PH. 2001. Increased cytochrome c‐mediated DNA fragmentation and cell death in manganese‐superoxide dismutase‐deficient mice after exposure to subarachnoid hemolysate. Stroke 32 (2): 506–515.

    Article  CAS  PubMed  Google Scholar 

  • Mayhan WG. 1999. LVEGF increases permeability of the blood‐brain barrier via a nitric oxide synthase/cGMP‐dependent pathway. Am J Physiol 276 (5 Pt. 1): C1148–C1153.

    Article  CAS  PubMed  Google Scholar 

  • McGirt MJ, Lynch JR, Blessing R, Warner DS, Friedman AH, et al. 2002. Serum von Willebrand factor, matrix metalloproteinase‐9, vascular endothelial growth factor levels predict the onset of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery 51 (5): 1128–1134.

    Article  PubMed  Google Scholar 

  • Meguro T, Chen B, Lancon J, Zhang JH. 2001a. Oxyhemoglobin induces caspase‐mediated cell death in cerebral endothelial cells. J Neurochem 77 (4): 1128–1135.

    Article  CAS  PubMed  Google Scholar 

  • Meguro T, Chen B, Parent AD, Zhang JH. 2001b. Caspase inhibitors attenuate oxyhemoglobin‐induced apoptosis in endothelial cells. Stroke 32 (2): 561–566.

    Article  CAS  PubMed  Google Scholar 

  • Meguro T, Klett CP, Chen B, Parent AD, Zhang JH. 2000. Role of calcium channels in oxyhemoglobin‐induced apoptosis in endothelial cells. J Neurosurg 93 (4): 640–646.

    Article  CAS  PubMed  Google Scholar 

  • Megyeri P, Nemeth L, Pabst KM, Pabst MJ, Deli MA, et al. 1999. 4–(2–Aminoethyl)benzenesulfonyl fluoride attenuates tumor‐necrosis‐factor‐alpha‐induced blood‐brain barrier opening. Eur J Pharmacol 374 (2): 207–211.

    Article  CAS  PubMed  Google Scholar 

  • Miao L, Calvert JW, Tang J, Zhang JH. 2002. Upregulation of small GTPase RhoA in the basilar artery from diabetic (mellitus) rats. Life Sci 71 (10): 1175–1185.

    Article  CAS  PubMed  Google Scholar 

  • Minet E, Michel G, Remacle J, Michiels C. 2000. Role of HIF‐1 as a transcription factor involved in embryonic development, cancer progression and apoptosis (Review). Int J Mol Med 5 (3): 253–259.

    CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I. 1972. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 247 (21): 6960–6962.

    Article  CAS  PubMed  Google Scholar 

  • Moritz W, Meier F, Stroka DM, Giuliani M, Kugelmeier P, et al. 2002. Apoptosis in hypoxic human pancreatic islets correlates with HIF‐1alpha expression. FASEB J 16 (7): 745–747.

    Article  CAS  PubMed  Google Scholar 

  • Mottet D, Michel G, Renard P, Ninane N, Raes M, et al. 2002. ERK and calcium in activation of HIF‐1. Ann N Y Acad Sci 973: 448–453.

    Article  CAS  PubMed  Google Scholar 

  • Nakagomi T, Kassell NF, Johshita H, Lehman RM, Fujiwara S, et al. 1989a. Blood‐arterial wall barrier disruption to various sized tracers following subarachnoid haemorrhage. Acta Neurochir (Wien) 99 (1–2): 76–84.

    Article  CAS  Google Scholar 

  • Nakagomi T, Kassell NF, Sasaki T, Lehman RM, Hongo K, et al. 1989b. Time course of the blood‐arterial wall barrier disruption following experimental subarachnoid haemorrhage. Acta Neurochir (Wien) 98 (3–4): 176–183.

    Article  CAS  Google Scholar 

  • Nam DH, Kim JS, Hong SC, Lee WH, Lee JI, et al. 2001. Expression of interleukin‐1 beta in lipopolysaccharide stimulated monocytes derived from patients with aneurysmal subarachnoid hemorrhage is correlated with cerebral vasospasm. Neurosci Lett 312 (1): 41–44.

    Article  CAS  PubMed  Google Scholar 

  • Narushima I, Kita T, Kubo K, Yonetani Y, Momochi C, et al. 1999. Contribution of endothelin‐1 to disruption of blood‐brain barrier permeability in dogs. Naunyn Schmiedebergs Arch Pharmacol 360 (6): 639–645.

    Article  CAS  PubMed  Google Scholar 

  • Nelson PB, Seif S, Gutai J, Robinson AG. 1984. Hyponatremia and natriuresis following subarachnoid hemorrhage in a monkey model. J Neurosurg 60 (2): 233–237.

    Article  CAS  PubMed  Google Scholar 

  • Niikawa S, Kitajima H, Ohe N, Miwa Y, Ohkuma A. 1998. Significance of acute cerebral swelling in patients with sylvian hematoma due to ruptured middle cerebral artery aneurysm, its management. Neurol Med Chir (Tokyo) 38 (12): 844–848.

    Article  CAS  Google Scholar 

  • Ogihara K, Barnanke DH, Zubkov AY, Parent AD, Zhang JH. 2000. Effect of endothelin receptor antagonists on non‐muscle matrix compaction in a cell culture vasospasm model. Neurol Res 22 (2): 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Ogihara K, Zubkov AY, Bernanke DH, Lewis AI, Parent AD, et al. 1999. Oxyhemoglobin‐induced apoptosis in cultured endothelial cells. J Neurosurg 91 (3): 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Ogunshola OO, Antic A, Donoghue MJ, Fan SY, Kim H, et al. 2002. Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 277 (13): 11410–11415.

    Article  CAS  PubMed  Google Scholar 

  • O'Hare TH. 1987. Subarachnoid hemorrhage: a review. J Emerg Med 5 (2): 135–148.

    Article  CAS  PubMed  Google Scholar 

  • Orz YI, Tsuji T, Aoki T, Yen Y, Chiba S, et al. 1998. Effects of oxyhemoglobin on vasoconstriction in response to 5–hydroxytryptamine in isolated, perfused canine basilar arteries. Neurosurgery 43 (5): 1176–1184.

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski RP, Colohan AR, Zhang JH. 2005. Mechanisms of hyperbaric oxygen‐induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 25: 554–571.

    Article  CAS  PubMed  Google Scholar 

  • Osuka K, Suzuki Y, Tanazawa T, Hattori K, Yamamoto N, et al. 1998a. Interleukin‐6 and development of vasospasm after subarachnoid haemorrhage. Acta Neurochir (Wien) 140 (9): 943–951.

    Article  CAS  Google Scholar 

  • Osuka K, Suzuki Y, Watanabe Y, Takayasu M, Yoshida J. 1998b. Inducible cyclooxygenase expression in canine basilar artery after experimental subarachnoid hemorrhage. Stroke 29 (6): 1219–1222.

    Article  CAS  PubMed  Google Scholar 

  • Page C, Doubell AF. 1996. Mitogen‐activated protein kinase (MAPK) in cardiac tissues. Mol Cell Biochem 157 (1–2): 49–57.

    CAS  PubMed  Google Scholar 

  • Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, et al. 2004. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke 35: 2412–2417.

    Article  CAS  PubMed  Google Scholar 

  • Parker LC, Luheshi GN, Rothwell NJ, Pinteaux E. 2002. IL‐1 beta signalling in glial cells in wildtype and IL‐1RI deficient mice. Br J Pharmacol 136 (2): 312–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patlolla A, Ogihara K, Aoki K, Zubkov A, Bengten E, et al. 1999. Hemolysate induces tyrosine phosphorylation and collagen‐lattice compaction in cultured fibroblasts. Biochem Biophys Res Commun 264 (1): 100–107.

    Article  CAS  PubMed  Google Scholar 

  • Paul R, Zhang ZG, Eliceiri BP, Jiang Q, Boccia AD, et al. 2001. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 7 (2): 222–227.

    Article  CAS  PubMed  Google Scholar 

  • Peterson EW, Cardoso ER. 1983. The blood‐brain barrier following experimental subarachnoid hemorrhage. Part 1: Response to insult caused by arterial hypertension. J Neurosurg 58 (3): 338–344.

    Article  CAS  PubMed  Google Scholar 

  • Petzold GC, Einhaupl KM, Dirnagl U, Dreier JP. 2003. Ischemia triggered by spreading neuronal activation is induced by endothelin‐1 and hemoglobin in the subarachnoid space. Ann Neurol 54 (5): 591–598.

    Article  CAS  PubMed  Google Scholar 

  • Pickard JD, Walker V, Brandt L, Zygmunt S, Smythe J. 1994. Effect of intraventricular haemorrhage and rebleeding following subarachnoid haemorrhage on CSF eicosanoids. Acta Neurochir (Wien) 129 (3–4): 152–157.

    Article  CAS  Google Scholar 

  • Pluta RM, Boock RJ, Afshar JK, Clouse K, Bacic M, et al. 1997. Source and cause of endothelin‐1 release into cerebrospinal fluid after subarachnoid hemorrhage. J Neurosurg 87 (2): 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Robertson GS, Crocker SJ, Nicholson DW, Schulz JB. 2000. Neuroprotection by the inhibition of apoptosis. Brain Pathol 10 (2): 283–292.

    Article  CAS  PubMed  Google Scholar 

  • Sadamasa N, Nozaki K, Hashimoto N. 2003. Disruption of gene for inducible nitric oxide synthase reduces progression of cerebral aneurysms. Stroke 34 (12): 2980–2984.

    Article  CAS  PubMed  Google Scholar 

  • Sadrzadeh SM, Anderson DK, Panter SS, Hallaway PE, Eaton JW. 1987. Hemoglobin potentiates central nervous system damage. J Clin Invest 79 (2): 662–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, et al. 2003. MAPK signaling up‐regulates the activity of hypoxia‐inducible factors by its effects on p300. J Biol Chem 278 (16): 14013–14019.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Kassell NF, Zuccarello M, Nakagomi T, Fijiwara S, et al. 1986. Barrier disruption in the major cerebral arteries during the acute stage after experimental subarachnoid hemorrhage. Neurosurgery 19 (2): 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Sayama T, Suzuki S, Fukui M. 1999. Role of inducible nitric oxide synthase in the cerebral vasospasm after subarachnoid hemorrhage in rats. Neurol Res 21 (3): 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt‐Kastner R, Aguirre‐Chen C, Kietzmann T, Saul I, Busto R, et al. 2004. Nuclear localization of the hypoxia‐regulated pro‐apoptotic protein BNIP3 after global brain ischemia in the rat hippocampus. Brain Res 1001 (1–2): 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Schulz JB, Weller M, Moskowitz MA. 1999. Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 45 (4): 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AY, Masago A, Sehba FA, Bederson JB. 2000a. Experimental models of subarachnoid hemorrhage in the rat: a refinement of the endovascular filament model. J Neurosci Methods 96 (2): 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AY, Sehba FA, Bederson JB. 2000b. Decreased nitric oxide availability contributes to acute cerebral ischemia after subarachnoid hemorrhage. Neurosurgery 47 (1): 208–214.

    CAS  PubMed  Google Scholar 

  • Sehba FA, Schwartz AY, Chereshnev I, Bederson JB. 2000. Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage. J Cereb Blood Flow Metab 20 (3): 604–611.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL, Agani F, Feldser D, Iyer N, Kotch L, et al. 2000. Hypoxia, HIF‐1, the pathophysiology of common human diseases. Adv Exp Med Biol 475: 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Sercombe R, Dinh YR, Gomis P. 2002. Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn J Pharmacol 88 (3): 227–249.

    Article  CAS  PubMed  Google Scholar 

  • Sharp FR, Liu J, Bernabeu R. 2002. Neurogenesis following brain ischemia. Brain Res Dev Brain Res 134 (1–2): 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Shin HK, Lee JH, Kim CD, Kim YK, Hong JY, et al. 2003. Prevention of impairment of cerebral blood flow autoregulation during acute stage of subarachnoid hemorrhage by gene transfer of Cu/Zn SOD‐1 to cerebral vessels. J Cereb Blood Flow Metab 23 (1): 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Sima B, MacDonald L, Marton LS, Weir B, Zhang J. 1996. Effect of P2–purinoceptor antagonists on hemolysate‐induced and adenosine 5′‐triphosphate‐induced contractions of dog basilar artery in vitro. Neurosurgery 39 (4): 815–821.

    Article  CAS  PubMed  Google Scholar 

  • Sima B, Weir BK, Macdonald RL, Zhang H. 1997. Extracellular nucleotide‐induced [Ca2+]i elevation in rat basilar smooth muscle cells. Stroke 28 (10): 2053–2058.

    Article  CAS  PubMed  Google Scholar 

  • Simonson MS, Dunn MJ. 1992. The molecular mechanisms of cardiovascular and renal regulation by endothelin peptides. J Lab Clin Med 119 (6): 622–639.

    CAS  PubMed  Google Scholar 

  • Simonson MS, Herman WH. 1993. Protein kinase C and protein tyrosine kinase activity contribute to mitogenic signaling by endothelin‐1. Cross‐talk between G protein‐coupled receptors and pp60c‐src. J Biol Chem 268 (13): 9347–9357.

    Article  CAS  PubMed  Google Scholar 

  • Sobey CG. 2001. Cerebrovascular dysfunction after subarachnoid haemorrhage: novel mechanisms and directions for therapy. Clin Exp Pharmacol Physiol 28 (11): 926–929.

    Article  CAS  PubMed  Google Scholar 

  • Sobey CG, Faraci FM. 1998. Subarachnoid haemorrhage: what happens to the cerebral arteries? Clin Exp Pharmacol Physiol 25 (11): 867–876.

    Article  CAS  PubMed  Google Scholar 

  • Suenobu N, Shichiri M, Iwashina M, Marumo F, Hirata Y. 1999. Natriuretic peptides and nitric oxide induce endothelial apoptosis via a cGMP‐dependent mechanism. Arterioscler Thromb Vasc Biol 19 (1): 140–146.

    Article  CAS  PubMed  Google Scholar 

  • Sugden PH, Clerk A. 1997. Regulation of the ERK subgroup of MAP kinase cascades through G protein‐coupled receptors. Cell Signal 9 (5): 337–351.

    Article  CAS  PubMed  Google Scholar 

  • Sugden PH, Clerk A. 1998. “Stress‐responsive” mitogen‐activated protein kinases (c‐Jun N‐terminal kinases and p38 mitogen‐activated protein kinases) in the myocardium. Circ Res 83 (4): 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Kassell NF, Lee KS. 1995. Hemin activation of an inducible isoform of nitric oxide synthase in vascular smooth‐muscle cells. J Neurosurg 83 (5): 862–866.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Takenaka K, Kassell NF, Lee KS. 1994. Hemoglobin augmentation of interleukin‐1 beta‐induced production of nitric oxide in smooth‐muscle cells. J Neurosurg 81 (6): 895–901.

    Article  CAS  PubMed  Google Scholar 

  • Sviri GE, Feinsod M, Soustiel JF. 2000. Brain natriuretic peptide and cerebral vasospasm in subarachnoid hemorrhage. Clinical and TCD correlations. Stroke 31 (1): 118–122.

    CAS  PubMed  Google Scholar 

  • Sviri GE, Shik B, Raz B, Soustiel JF. 2001. Brain natriuretic peptide and cerebral vasospasm in subarachnoid hemorrhage. Acta Neurochir Suppl 77: 41–43.

    CAS  PubMed  Google Scholar 

  • Takizawa T, Tada T, Kitazawa K, Tanaka Y, Hongo K, et al. 2001. Inflammatory cytokine cascade released by leukocytes in cerebrospinal fluid after subarachnoid hemorrhage. Neurol Res 23 (7): 724–730.

    Article  CAS  PubMed  Google Scholar 

  • Tibbs R, Zubkov A, Aoki K, Meguro T, Badr A, et al. 2000. Effects of mitogen‐activated protein kinase inhibitors on cerebral vasospasm in a double‐hemorrhage model in dogs. J Neurosurg 93 (6): 1041–1047.

    Article  CAS  PubMed  Google Scholar 

  • Tsurutani H, Ohkuma H, Suzuki S. 2003. Effects of thrombin inhibitor on thrombin‐related signal transduction and cerebral vasospasm in the rabbit subarachnoid hemorrhage model. Stroke 34 (6): 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  • Van den Bergh WM, Zuur JK, Kamerling NA, van Asseldonk JT, Rinkel GJ, et al. 2002. Role of magnesium in the reduction of ischemic depolarization and lesion volume after experimental subarachnoid hemorrhage. J Neurosurg 97 (2): 416–422.

    Article  PubMed  Google Scholar 

  • Veelken JA, Laing RJ, Jakubowski J. 1995. The Sheffield model of subarachnoid hemorrhage in rats. Stroke 26 (7): 1279–1283.

    Article  CAS  PubMed  Google Scholar 

  • Voldby B, Enevoldsen EM. 1982. Intracranial pressure changes following aneurysm rupture. Part 3: Recurrent hemorrhage. J Neurosurg 56 (6): 784–789.

    Article  CAS  PubMed  Google Scholar 

  • Vollrath B, Cook D, Megyesi J, Findlay JM, Ohkuma H. 1998. Novel mechanism by which hemoglobin induces constriction of cerebral arteries. Eur J Pharmacol 361 (2–3): 311–319.

    Article  CAS  PubMed  Google Scholar 

  • Volm M, Koomagi R. 2000. Hypoxia‐inducible factor (HIF‐1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res 20 (3A): 1527–1533.

    CAS  PubMed  Google Scholar 

  • Weir B, Macdonald RL, Stoodley M. 1999. Etiology of cerebral vasospasm. Acta Neurochir Suppl (Wien) 72: 27–46.

    CAS  Google Scholar 

  • Winn HR, Almaani WS, Berga SL, Jane JA, Richardson AE. 1983. The long‐term outcome in patients with multiple aneurysms. Incidence of late hemorrhage and implications for treatment of incidental aneurysms. J Neurosurg 59 (4): 642–651.

    Article  CAS  PubMed  Google Scholar 

  • Yakubu MA, Leffler CW. 1999. Regulation of ET‐1 biosynthesis in cerebral microvascular endothelial cells by vasoactive agents and PKC Am J Physiol 276 (2 Pt. 1): C300–C305.

    Article  CAS  PubMed  Google Scholar 

  • Yakubu MA, Shibata M, Leffler CW. 1994. Subarachnoid hematoma attenuates vasodilation and potentiates vasoconstriction induced by vasoactive agents in newborn pigs. Pediatr Res 36 (5): 589–594.

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Gao L, Jiang S, Guan P, Mao B. 2001. Association of HIF‐1alpha expression and cell apoptosis after traumatic brain injury in the rat. Chin J Traumatol 4 (4): 218–221.

    CAS  PubMed  Google Scholar 

  • Zhang B, Fugleholm K, Day LB, Ye S, Weller RO, et al. 2003. Molecular pathogenesis of subarachnoid haemorrhage. Int J Biochem Cell Biol 35 (9): 1341–1360.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cook D. 1994. Cerebral vascular smooth muscle potassium channels and their possible role in the management of vasospasm. Pharmacol Toxicol 75 (6): 327–336.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Weir B, Marton LS, Macdonald RL, Bindokas V, et al. 1995. Mechanisms of hemolysate‐induced [Ca2+]i elevation in cerebral smooth muscle cells. Am J Physiol 269 (6 Pt. 2): H1874–H1890.

    CAS  PubMed  Google Scholar 

  • Zhang H, Weir BK, Macdonald RL, Marton LS, Solenski NJ, et al. 1996. Mechanisms of [Ca++]i elevation induced by erythrocyte components in endothelial cells. J Pharmacol Exp Ther 277 (3): 1501–1509.

    CAS  PubMed  Google Scholar 

  • Zhang H, Weir BK, Marton LS, Lee KS, Macdonald RL. 1997. P2 purinoceptors in cultured bovine middle cerebral artery endothelial cells. J Cardiovasc Pharmacol 30 (6): 767–774.

    Article  CAS  PubMed  Google Scholar 

  • Zhang JH. 2001. Role of MAPK in cerebral vasospasm. Drug News Perspect 14 (5): 261–267.

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, et al. 2000. VEGF enhances angiogenesis and promotes blood‐brain barrier leakage in the ischemic brain. J Clin Invest 106 (7): 829–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, et al. 2004. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 24 (4): 419–431.

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Zou Y, Aikawa R, Harada K, Kudoh S, et al. 1999. MAPK superfamily plays an important role in daunomycin‐induced apoptosis of cardiac myocytes. Circulation 100 (20): 2100–2107.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann M, Seifert V. 1998. Endothelin and subarachnoid hemorrhage: an overview. Neurosurgery 43 (4): 863–875.

    Article  CAS  PubMed  Google Scholar 

  • Zubkov AY, Aoki K, Parent AD, Zhang JH. 2002. Preliminary study of the effects of caspase inhibitors on vasospasm in dog penetrating arteries. Life Sci 70 (25): 3007–3018.

    Article  CAS  PubMed  Google Scholar 

  • Zubkov AY, Nanda A, Zhang JH. 2003. Signal transduction pathways in cerebral vasospasm. Pathophysiology 9 (2): 47–61.

    Article  CAS  PubMed  Google Scholar 

  • Zubkov AY, Ogihara K, Bernanke DH, Parent AD, Zhang J. 2000a. Apoptosis of endothelial cells in vessels affected by cerebral vasospasm. Surg Neurol 53 (3): 260–266.

    Article  CAS  PubMed  Google Scholar 

  • Zubkov AY, Ogihara K, Patllola A, Parent AD, Zhang J. 2000b. Mitogen‐activated protein kinase plays an important role in hemolysate‐induced contraction in rabbit basilar artery. Acta Neurochir Suppl 76: 217–221.

    CAS  PubMed  Google Scholar 

  • Zubkov AY, Rollins KS, Parent AD, Zhang J, Bryan RM Jr. 2000c. Mechanism of endothelin‐1–induced contraction in rabbit basilar artery. Stroke 31 (2): 526–533.

    Article  CAS  PubMed  Google Scholar 

  • Zubkov AY, Rollins KS, McGehee B, Parent AD, Zhang JH. 2001. Relaxant effect of U0126 in hemolysate‐, oxyhemoglobin‐, bloody cerebrospinal fluid‐induced contraction in rabbit basilar artery. Stroke 32 (1): 154–161.

    Article  CAS  PubMed  Google Scholar 

  • Zuccarello M, Anderson DK. 1989. Protective effect of a 21–aminosteroid on the blood‐brain barrier following subarachnoid hemorrhage in rats. Stroke 20 (3): 367–371.

    Article  CAS  PubMed  Google Scholar 

  • Zuccarello M, Sasaki T, Kassell NF, Yamashita M. 1988. Effect of intracisternal thromboxane A2 analogue on cerebral artery permeability. Acta Neurochir (Wien) 90 (3–4): 144–151.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by American Heart Association Bugher Foundation for Stroke Award and by NIH NS45694, NS43338, and HD43120 to JHZ.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Ostrowski, R.P., Colohan, A.R.T., Zhang, J.H. (2007). Molecular Mechanisms for Early Brain Injury After Subarachnoid Hemorrhage. In: Lajtha, A., Chan, P.H. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30383-3_13

Download citation

Publish with us

Policies and ethics