Skip to main content

Abstract

There are three major technical components of positron emission tomography (PET): PET scanner, cyclotron production of radiopharmaceuticals, and biological assays of normal and disease processes. A historical perspective from the early development stages through today is given for each of these technology areas, as well as some predictions for the future. Details of the technologies are given on PET scanners and cameras in Chapter 2 and for cyclotron production of radiopharmaceuticals in Chapter 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shields AF, Grierson JR, Dohmen BM, et al.: Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nature Medicine 1998;4:1334–1336.

    Article  PubMed  CAS  Google Scholar 

  2. Phelps ME, Hoffman E, Mullani N, et al.: Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 1975;16:210–224.

    PubMed  CAS  Google Scholar 

  3. Phelps ME, Cherry SR: The changing design of positron imaging systems. Clin Pos Imaging 1998;1:31–45.

    Article  Google Scholar 

  4. Patton JA: Instrumentation for coincidence imaging with multihead scintillation cameras. J Nucl Med 2000;30:239–254.

    CAS  Google Scholar 

  5. Phelps ME: PET: The merger of biology and imaging into molecular imaging. J Nucl Med 2000;41:661–681.

    PubMed  CAS  Google Scholar 

  6. Phelps ME: Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci (USA) 2000;97:9226–9233.

    Article  CAS  Google Scholar 

  7. Sokoloff L, Reivich M, Kennedy C, et al.: The (14C) deoxyglucose method for the measurement of local glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916.

    Article  PubMed  CAS  Google Scholar 

  8. Ido T, Wan C-N, Casella JS, et al.: Labeled 2-deoxy-D-glucose analogs: F labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Labeled Compds Radiopharmacol 1978;14:175–183.

    Article  CAS  Google Scholar 

  9. Phelps ME, Huang SC, Hoffman EJ, et al.:Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-deoxy-D-glucose: Validation of method. Ann Neurol 1979;6:371–388.

    Article  PubMed  CAS  Google Scholar 

  10. Reivich M, Kuhl D, Wolf A, et al.: The (18F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979;44:117–127.

    Google Scholar 

  11. Huang SC, Phelps ME, Hoffman EJ, et al.: Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 1980;238:E69–E82.

    PubMed  CAS  Google Scholar 

  12. Woodward GE, Hudson MT: The effect of 2-deoxy-D-glucose in glycolysis and respiration of tumor and normal tissues. Cancer Res 1954;14: 599–605.

    PubMed  CAS  Google Scholar 

  13. Fowler JS, Wolf AP: Positron emitter-labeled compounds: Priorities and programs, in Phelps ME, Mazziotta JC, Schelbert HR (eds): Positron Emission Tomography and Autoradiography: Principles and Applications. New York: Raven Press, 1986, pp 391–450.

    Google Scholar 

  14. Burnham C, Brownell G: A multi-crystal positron camera. IEEE Trans Nucl Sci 1972;19:201–205.

    CAS  Google Scholar 

  15. Brownell G, Burnham C: MGH positron camera, in Freedman G (ed): Tomographic Imaging in Nuclear Medicine. New York: Society of Nuclear Medicine, 1973, pp 154–164.

    Google Scholar 

  16. Muehllehner G, Buchin M, Dudek J: Performance parameters of a positron imaging camera. IEEE Trans Nucl Sci 1976;NS-23:528–537.

    Google Scholar 

  17. Robertson J, Marr R, Roseblum B: Thirty-two crystal positron transverse section detector, in Freedman G (ed): Tomographic Imaging in Nuclear Medicine. New York: Society of Nuclear Medicine, 1973, pp 151–153.

    Google Scholar 

  18. Kuhl D, Edwards R: Cylindrical and section radioisotope scanning of the liver and brain. Radiology 1964;83:926–935.

    PubMed  CAS  Google Scholar 

  19. Hounsfield G, Ambrose J: Computerized transverse axial scanning (tomography). Part I: Description of system. Part II: Clinical applications. Br J Radiol 1973;46:1016–1047.

    Article  PubMed  CAS  Google Scholar 

  20. McCormack A: Reconstruction of densities from their projections, with applications to radiological physics. Phys Med Biol 1973;18:195–207.

    Article  Google Scholar 

  21. Phelps ME, Hoffman E, Mullani N, et al.: Design considerations for a positron emission transaxial tomograph (PETT III). IEEE 1976;NS-23:516–522.

    Google Scholar 

  22. Hoffman E, Phelps ME, Mullani N, et al.: Design and performance characteristics of a whole body transaxial tomograph. J Nucl Med 1976;17:493–503.

    Google Scholar 

  23. Satyamurthy N, Barrio J, Phelps ME: Electronic generators for the production of positron-emitted labeled radiopharmaceuticals: Where would PET be without them? Clin Positron Imaging 1999;2:233–253.

    Article  PubMed  Google Scholar 

  24. Cherry SR, Shao Y, Silverman RW, et al.: MicroPET: A high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 1997;44:1109–1113.

    Article  Google Scholar 

  25. Chatziioannou AF, Cherry SR, Shao Y, et al.: Performance evaluation of microPET: A high resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999;40:1164–1175.

    PubMed  CAS  Google Scholar 

  26. Phelps ME, Hoffman E, Huang S, et al.: A new computerized tomographic imaging system for positron emitting radiopharmaceuticals. J Nucl Med 1978;19:635–647.

    PubMed  CAS  Google Scholar 

  27. Hoffman E, Ricci A, van der Stee LMAM, et al.: ECAT III—Basic design considerations. IEEE Trans Nucl Sci 1983;NS-30:729–733.

    Google Scholar 

  28. Brownell G, Burkham C, Chesler D, et al.: Transverse section imaging of radionuclide distributions in heart, lung and brain, inTer Pogossian M, Phelps M, Brownell G, Cox J, Davis D, Evans R (eds): Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine. Baltimore: University Park Press, 1977, pp 293–308.

    Google Scholar 

  29. Cho Z, Chan J, Eriksson L: Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclide distribution. IEEE Trans Nucl Sci 1976;NS-23:613–622.

    Google Scholar 

  30. Cho Z, Farukhi M: BGO as a potential scintillation detector in positron cameras. J Nucl Med 1977;18:840–844.

    PubMed  CAS  Google Scholar 

  31. Derenzo SE, Budinger T, Cahoon J: High resolution computed tomography of positron emitters. IEEE Nucl Sci 1977;NS-24:544–558.

    Article  Google Scholar 

  32. Derenzo SE: Monte Carlo calculations of the detection efficiency of arrays of NaI(Tl), BGO, CsF, Ge, and plastic detectors for 511keV photons. IEEE Trans Nucl Sci 1981;NS-28:131–136.

    Google Scholar 

  33. Derenzo SE, Budinger TF, Huessman RH, et al.: Imaging properties of a positron tomograph with 280 BGO crystals. IEEE Trans Nucl Sci 1981;NS-28:81–89.

    Google Scholar 

  34. Casey M, Nutt R: A multislice two-dimensional BGO detector system for PET. IEEE Trans Nucl Sci 1986;NS-33:760–763.

    Google Scholar 

  35. Guerrero T, Hoffman E, Dahlbom M, et al.: Characterization of a whole-body imaging technique for PET. IEEE Trans Nucl Sci 1990;37:676–680.

    Article  Google Scholar 

  36. Dahlbom M, Hoffman E, Hoh CK, et al.: Evaluation of a positron emission tomography (PET) scanner for whole body imaging. J Nucl Med 1992;33:1191–1199.

    PubMed  CAS  Google Scholar 

  37. Gambhir S, Czernin J, Schwimmer J, et al.: A tabulated summary of the 2-[F-18]fluorodeoxyglucose (FDG) positron emission tomography (PET) literature. J Nucl Med 2001;42:15.

    Google Scholar 

  38. Karp J, Muehllehner G, Mankoff D, et al.: Continuous-slice PENN-PET: A positron tomography with volume imaging capability. J Nucl Med 1990;31:617–627.

    PubMed  CAS  Google Scholar 

  39. Beyer T, Townsend DT, Brun T, et al.: A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–1379.

    PubMed  CAS  Google Scholar 

  40. Patton JA, Delbeke D, Sandler MP: Image fusion using integrated dual-head coincidence camera with x-ray tube based attenuation maps. J Nucl Med 2000;41:1364–1368.

    PubMed  CAS  Google Scholar 

  41. Shreve, P: Adding structure to function. J Nucl Med 2000;41:1380–1381.

    PubMed  CAS  Google Scholar 

  42. Casey M, Eriksson L, Schmand M, et al.: Investigation of LSO crystals for high spatial resolution positron emission tomography. IEEE Trans Nucl Sci 1997;44:1109–1113.

    Article  CAS  Google Scholar 

  43. Gambhir SS, Barrio JR, Phelps ME, et al.: Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 1999;96:2333–2338.

    Article  PubMed  CAS  Google Scholar 

  44. Tjuvajev JG, Chen SH, Joshi A, et al.: Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer expression in vivo. Cancer Res 1999;59:5186–5193.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Phelps, M.E. (2002). History of PET. In: Delbeke, D., Martin, W.H., Patton, J.A., Sandler, M.P. (eds) Practical FDG Imaging: A Teaching File. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22453-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22453-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95292-5

  • Online ISBN: 978-0-387-22453-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics