Skip to main content

Patient-Specific Modeling and Simulation of Deep Brain Stimulation

  • Chapter
  • First Online:
Patient-Specific Modeling in Tomorrow's Medicine

Abstract

Deep brain stimulation (DBS) is widely used for reduction of symptoms caused by movement disorders. In this chapter a patient-specific finite element method for modeling and simulation of DBS electric parameters is presented. The individual’s stereotactic preoperative MR-batch of images is used as input to the model in order to classify tissue type and allot electrical conductivity for cerebrospinal fluid, blood and grey as well as white matter. With patient-specific positioning of the DBS electrodes the method allows for investigation of the relative electric field changes in relation to anatomy and DBS-settings. Examples of visualization of the patient-specific electric entities together with the surrounding anatomy are given. The use of the method is exemplified on patients with Parkinson’s disease. Future applications including multiphysics simulations and applicability for new DBS targets and symptoms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreuccetti, D., Fossi, R., Petrucci, C.: Dielectric Properties of Body Tissue. Italian National Research Council, Institute for Applied Physics, Florence, Italy (2005). http://niremf.ifac.cnr.it/tissprop/

    Google Scholar 

  2. Åström, M.: Modelling, simulation and visualisation of deep brain stimulation. Linköping studies in science and technology Dissertation, No. 1384, Department of Biomedical Engineering, Linköping University (2011). http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70090

  3. Åström, M., Johansson, J.D., Hariz, M.I., Eriksson, O., Wårdell, K.: The effect of cystic cavities on deep brain stimulation in the basal ganglia: a simulation-based study. J. Neural. Eng. 3, 132–138 (2006)

    Article  Google Scholar 

  4. Åström, M., Lemaire, J., Wårdell, K.: Influence of heterogeneous and anisotropic tissue conductivity on electric field distribution in deep brain stimulation. Submitted. (2011)

    Google Scholar 

  5. Åström, M., Tripoliti, E., Hariz, M.I., Zrinzo, L.U., Martinez-Torres, I., Limousin, P., Wårdell, K.: Patient-specific model-based investigation of speech intelligibility and movement during deep brain stimulation. Stereotact. Funct. Neurosurg. 88, 224–233 (2010)

    Article  Google Scholar 

  6. Åström, M., Zrinzo, L.U., Tisch, S., Tripoliti, E., Hariz, M.I., Wårdell, K.: Method for patient-specific finite element modeling and simulation of deep brain stimulation. Med. Biol. Eng. Comput. 47, 21–28 (2009) [Epub 2008 Oct 21]

    Google Scholar 

  7. Benabid, A.L.: Deep brain stimulation for Parkinson’s disease. Curr. Opin. Neurobiol. 13, 696–706 (2003)

    Article  Google Scholar 

  8. Benabid, A.L., Chabardes, S., Mitrofanis, J., Pollak, P.: Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 8, 67–81 (2009)

    Article  Google Scholar 

  9. Butson, C.R., Cooper, S.E., Henderson, J.M., Mcintyre, C.C.: Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34, 661–670 (2007)

    Article  Google Scholar 

  10. Cheng, D.K.: Field and Wave Electromagnetics. Addison-Wesley Publishing Company Inc, New York (1989)

    Google Scholar 

  11. Diczfalusy, E., Zsigmond, P., Dizdar, N., Kullman, A., Loyd, D., Wårdell, K.: A patient-specific multiphysics model for prediction of analyte diffusion when using microdialysis in parallel to deep brain stimulation. Submitted. (2011)

    Google Scholar 

  12. Gross, R.E., Krack, P., Rodriguez-Oroz, M.C., Rezai, A.R., Benabid, A.L.: Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov. Disord. 21, S259–S283 (2006)

    Article  Google Scholar 

  13. Hardman, C.D., Henderson, J.M., Finkelstein, D.I., Horne, M.K., Paxinos, G., Halliday, G.M.: Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J. Comp. Neurol. 445, 238–255 (2002)

    Article  Google Scholar 

  14. Hariz, M.I., Rehncrona, S., Quinn, N.P., Speelman, J.D., Wensing, C.: Multicenter study on deep brain stimulation in Parkinson’s disease: an independent assessment of reported adverse events at 4 years. Mov. Disord. 23, 416–421 (2008)

    Article  Google Scholar 

  15. Hemm, S., Mennessier, G., Vayssiere, N., Cif, L., El Fertit, H., Coubes, P.: Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging. J. Neurosurg. 103, 949–955 (2005)

    Article  Google Scholar 

  16. Hemm, S., Wårdell, K.: Stereotactic implantation of deep brain stimulation electrodes: a review of technical systems, methods and emerging tools. Med. Biol. Eng. Comput. 48, 611–624 (2010)

    Article  Google Scholar 

  17. Johansson, J.D., Blomstedt, P., Haj-Hosseini, N., Bergenheim, A.T., Eriksson, O., Wårdell, K.: Combined diffuse light reflectance and electrical impedance measurements as a navigation aid in deep brain surgery. Stereotact. Funct. Neurosurg. 87, 105–113 (2009)

    Article  Google Scholar 

  18. Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings IEEE TVCG/EG Symposium on Visualization, pp. 147–154. (2004)

    Google Scholar 

  19. Maks, C.B., Butson, C.R., Walter, B.L., Vitek, J.L., Mcintyre, C.C.: Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes. J. Neurol. Neurosurg. Psychiatry. 80, 659–666 (2009) [Epub 2008 Apr 10]

    Google Scholar 

  20. Martens, H.C., Toader, E., Decre, M.M., Anderson, D.J., Vetter, R., Kipke, D.R., Baker, K.B., Johnson, M.D., Vitek, J.L.: Spatial steering of deep brain stimulation volumes using a novel lead design. Clin. Neurophysiol. 122, 558–566 (2011)

    Article  Google Scholar 

  21. Mcintyre, C.C., Mori, S., Sherman, D.L., Thakor, N.V., Vitek, J.L.: Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin. Neurophysiol. 115, 589–595 (2004)

    Article  Google Scholar 

  22. Mikos, A., Bowers, D., Noecker, A.M., Mcintyre, C.C., Won, M., Chaturvedi, A., Foote, K.D., Okun, M.S.: Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency. Neuroimage 54(Suppl 1), S238–S246 (2011)

    Article  Google Scholar 

  23. Morel, A.: Stereotactic Atlas of the Human Thalamus and Basal Ganglia. Informa Healthcare, New York (2007)

    Google Scholar 

  24. Nowinski, W.L., Thirunavuukarasuu, M., Benabid, A.L.: The cerefy clinical brainAtlas: enhanced edition with surgical planning and intraoperative support. CD-ROM (2005)

    Google Scholar 

  25. Panescu, D.: Emerging technologies. Implantable neurostimulation devices. IEEE Eng. Med. Biol. Mag. 27, 100–105 (2008). 113

    Article  Google Scholar 

  26. Tripoliti, E., Zrinzo, L., Martinez-Torres, I., Tisch, S., Frost, E., Borrell, E., Hariz, M.I., Limousin, P.: Effects of contact location and voltage amplitude on speech and movement in bilateral subthalamic nucleus deep brain stimulation. Mov. Disord. 23, 2377–2383 (2008)

    Article  Google Scholar 

  27. Tuch, D.S., Wedeen, V.J., Dale, A.M., George, J.S., Belliveau, J.W.: Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc. Natl. Acad. Sci. USA 98, 11697–11701 (2001)

    Article  Google Scholar 

  28. Vasques, X., Cif, L., Hess, O., Gavarini, S., Mennessier, G., Coubes, P.: Stereotactic model of the electrical distribution within the internal globus pallidus during deep brain stimulation. J. Comput. Neurosci. 26, 109–118 (2008)

    Article  Google Scholar 

  29. Vitek, J.L., Delong, M.R., Starr, P.A., Hariz, M.I., Metman, L.V.: Intraoperative neurophysiology in DBS for dystonia. Mov. Disord. 26(Suppl 1), S31–S36 (2011)

    Article  Google Scholar 

  30. Wårdell, K., Blomstedt, P., Richter, J., Antonsson, J., Eriksson, O., Zsigmond, P., Bergenheim, A.T., Hariz, M.I.: Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring. Stereotact. Funct. Neurosurg. 85, 279–286 (2007)

    Article  Google Scholar 

  31. Yousif, N., Bayford, R., Bain, P.G., Liu, X.: The peri-electrode space is a significant element of the electrode-brain interface in deep brain stimulation: a computational study. Brain. Res. Bull. 74, 361–368 (2007) [Epub 2007 Jul 26]

    Google Scholar 

  32. Yousif, N., Liu, X.: Modeling the current distribution across the depth electrode-brain interface in deep brain stimulation. Expert Rev. Med. Devices 4, 623–631 (2007)

    Article  Google Scholar 

  33. Zrinzo, L., Hariz, M.: Impedance recording in functional neurosurgery. In: Gildenberg, P.L., Lozano, A.M., Tasker, R. (eds.) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin (2008)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the clinical collegues at the Unit of Functional Neurosurgery, London University Collegue and at the Division of Neurology and Neurosurgery at Linköping University Hospital for very valuable input and discussions during the development of the software. The work was financially supported as a group grant (311-2006-7661) by the Swedish Foundation for Strategic Research (SSF), the Swedish Research Council (VR) and the Swedish Governmental Agency for Innovation Systems (VINNOVA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Wårdell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wårdell, K., Diczfalusy, E., Åström, M. (2011). Patient-Specific Modeling and Simulation of Deep Brain Stimulation. In: Gefen, A. (eds) Patient-Specific Modeling in Tomorrow's Medicine. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 09. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_104

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_104

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24617-3

  • Online ISBN: 978-3-642-24618-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics