Skip to main content

The Dermis as a Portal for Dendritic Cell-Targeted Immunotherapy of Cutaneous Melanoma

  • Chapter
  • First Online:
Intradermal Immunization

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 351))

Abstract

Complete surgical excision at an early stage remains the only curative treatment for cutaneous melanoma with few available adjuvant therapy options. Nevertheless, melanoma is a relatively immunogenic tumor type and particularly amenable to immunotherapeutic approaches. A dense network of cutaneous dendritic cells (DC) may account for the reported efficacy of vaccination through the skin and provide an attractive target for the immunotherapy of melanoma. Several phenotypically distinct DC subsets are discernable in the skin, among others, epidermal Langerhans cells and dermal DC. Upon appropriate activation both subsets can efficiently migrate to melanoma-draining lymph nodes (LN) to prime T cell-mediated responses. Unfortunately, from an early stage, melanoma development is characterized by strong immune suppression, facilitating unchecked tumor growth and spread. Particularly the primary tumor site and the first-line tumor-draining LN, the so-called sentinel LN, bear the brunt of this melanoma-induced immune suppression—and these are exactly the sites where anti-melanoma effector T cell responses should be primed by DC in order to prevent early metastasis. Through local immunopotentiation or through DC-targeted vaccination, the dermis may be utilized as a portal to activate DC and kick-start or boost effective T cell-mediated anti-melanoma immunity, even in the face of this immune suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams S, O’Neill DW, Nonaka D, Hardin E, Chiriboga L, Siu K, Cruz CM, Angiulli A, Angiulli F, Ritter E, Holman RM, Shapiro RL, Berman RS, Berner N, Shao Y, Manches O, Pan L, Venhaus RR, Hoffman EW, Jungbluth A, Gnjatic S, Old L, Pavlick AC, Bhardwaj N (2008) Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol 181:776–784

    PubMed  CAS  Google Scholar 

  • Anon (2010) http://clinicaltrials.gov/ct2/show/NCT00960752

  • Altin JG, Parish CR (2006) Liposomal vaccines-targeting the delivery of antigen. Methods 40:39–52

    PubMed  CAS  Google Scholar 

  • Angel CE, Lala A, Chen CJ, Edgar SG, Ostrovsky LL, Dunbar PR (2007) CD14+ antigen-presenting cells in human dermis are less mature than their CD1a+ counterparts. Int Immunol 19:1271–1279

    PubMed  CAS  Google Scholar 

  • Ascierto PA, Kirkwood JM (2008) Adjuvant therapy of melanoma with interferon: lessons of the past decade. J Transl Med 6:62

    PubMed  Google Scholar 

  • Asselin-Paturel C, Brizard G, Chemin K, Boonstra A, O’Garra A, Vicari A, Trinchieri G (2005) Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J Exp Med 201:1157–1167

    PubMed  CAS  Google Scholar 

  • Attia P, Phan GQ, Maker AV, Robinson MR, Quezado MM, Yang JC, Sherry RM, Topalian SL, Kammula US, Royal RE, Restifo NP, Haworth LR, Levy C, Mavroukakis SA, Nichol G, Yellin MJ, Rosenberg SA (2005) Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T lymphocyte antigen-4. J Clin Oncol 23:6043–6053

    PubMed  CAS  Google Scholar 

  • Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+ CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207:1273–1281

    PubMed  CAS  Google Scholar 

  • Balch CM, Buzaid AC, Soong SJ, Atkins MB, Cascinelli N, Coit DG, Fleming ID, Gershenwald JE, Houghton A, Kirkwood JM, McMasters KM, Mihm MF, Morton DL, Reintgen DS, Ross MI, Sober A, Thompson JA, Thompson JF (2001) Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol 19:3635–3648

    PubMed  CAS  Google Scholar 

  • Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, Buzaid AC, Cochran AJ, Coit DG, Ding S, Eggermont AM, Flaherty KT, Gimotty PA, Kirkwood JM, McMasters KM, Mihm MC, Jr., Morton DL, Ross MI, Sober AJ, Sondak VK (2009a) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206

    PubMed  Google Scholar 

  • Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, Buzaid AC, Cochran AJ, Coit DG, Ding S, Eggermont AM, Flaherty KT, Gimotty PA, Kirkwood JM, McMasters KM, Mihm MC Jr, Morton DL, Ross MI, Sober AJ, Sondak VK (2009b) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206

    PubMed  Google Scholar 

  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YT, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    PubMed  CAS  Google Scholar 

  • Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61:6451–6458

    PubMed  CAS  Google Scholar 

  • Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687

    PubMed  CAS  Google Scholar 

  • Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, Allan RS, Wojtasiak M, Shortman K, Carbone FR, Brooks AG, Heath WR (2009) Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 10:488–495

    PubMed  CAS  Google Scholar 

  • Bong AB, Bonnekoh B, Franke I, Schon MP, Ulrich J, Gollnick H (2002) Imiquimod, a topical immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology 205:135–138

    PubMed  CAS  Google Scholar 

  • Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196:1627–1638

    PubMed  CAS  Google Scholar 

  • Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, Brimnes MK, Moltedo B, Moran TM, Steinman RM (2004) In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199:815–824

    PubMed  CAS  Google Scholar 

  • Bostick PJ, Morton DL, Turner RR, Huynh KT, Wang HJ, Elashoff R, Essner R, Hoon DS (1999) Prognostic significance of occult metastases detected by sentinel lymphadenectomy and reverse transcriptase-polymerase chain reaction in early-stage melanoma patients. J Clin Oncol 17:3238–3244

    PubMed  CAS  Google Scholar 

  • Bouwhuis MG, Suciu S, Collette S, Aamdal S, Kruit WH, Bastholt L, Stierner U, Sales F, Patel P, Punt CJ, Hernberg M, Spatz A, ten Hagen TL, Hansson J, Eggermont AM (2009) Autoimmune antibodies and recurrence-free interval in melanoma patients treated with adjuvant interferon. J Natl Cancer Inst 101:869–877

    PubMed  CAS  Google Scholar 

  • Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, Gilson MM, Wang C, Selby M, Taube JM, Anders R, Chen L, Korman AJ, Pardoll DM, Lowy I, Topalian SL (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175

    PubMed  CAS  Google Scholar 

  • Brand CU, Hunger RE, Yawalkar N, Gerber HA, Schaffner T, Braathen LR (1999) Characterization of human skin-derived CD1a-positive lymph cells. Arch Dermatol Res 291:65–72

    PubMed  CAS  Google Scholar 

  • Brandao JG, Scheper RJ, Lougheed SM, Curiel DT, Tillman BW, Gerritsen WR, van den Eertwegh AJ, Pinedo HM, Haisma HJ, de Gruijl TD (2003) CD40-targeted adenoviral gene transfer to dendritic cells through the use of a novel bispecific single-chain Fv antibody enhances cytotoxic T cell activation. Vaccine 21:2268–2272

    PubMed  CAS  Google Scholar 

  • Brody JR, Costantino CL, Berger AC, Sato T, Lisanti MP, Yeo CJ, Emmons RV, Witkiewicz AK (2009) Expression of indoleamine 2, 3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle 8:1930–1934

    PubMed  CAS  Google Scholar 

  • Cecchi R, Buralli L, Innocenti S, De Gaudio C (2007) Sentinel lymph node biopsy in patients with thin melanomas. J Dermatol 34:512–515

    PubMed  Google Scholar 

  • Cesana GC, DeRaffele G, Cohen S, Moroziewicz D, Mitcham J, Stoutenburg J, Cheung K, Hesdorffer C, Kim-Schulze S, Kaufman HL (2006) Characterization of CD4+ CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol 24:1169–1177

    PubMed  CAS  Google Scholar 

  • Chang BA, Cross JL, Najar HM, Dutz JP (2009) Topical resiquimod promotes priming of CTL to parenteral antigens. Vaccine 27:5791–5799

    PubMed  CAS  Google Scholar 

  • Chaperot L, Blum A, Manches O, Lui G, Angel J, Molens JP, Plumas J (2006) Virus or TLR agonists induce TRAIL-mediated cytotoxic activity of plasmacytoid dendritic cells. J Immunol 176:248–255

    PubMed  CAS  Google Scholar 

  • Cheever MA (2008) Twelve immunotherapy drugs that could cure cancers. Immunol Rev 222:357–368

    PubMed  CAS  Google Scholar 

  • Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4:336–347

    PubMed  CAS  Google Scholar 

  • Chung EY, Liu J, Homma Y, Zhang Y, Brendolan A, Saggese M, Han J, Silverstein R, Selleri L, Ma X (2007) Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity 27:952–964

    PubMed  CAS  Google Scholar 

  • Clark RA (2010) Skin-resident T cells: the ups and downs of on site immunity. J Invest Dermatol 130:362–370

    PubMed  CAS  Google Scholar 

  • Clive KS, Tyler JA, Clifton GT, Holmes JP, Mittendorf EA, Ponniah S, Peoples GE (2010) Use of GM-CSF as an adjuvant with cancer vaccines: beneficial or detrimental? Expert Rev Vaccines 9:519–525

    PubMed  CAS  Google Scholar 

  • Cochran AJ, Huang RR, Lee J, Itakura E, Leong SP, Essner R (2006) Tumour-induced immune modulation of sentinel lymph nodes. Nat Rev Immunol 6:659–670

    PubMed  CAS  Google Scholar 

  • Cochran AJ, Morton DL, Stern S, Lana AM, Essner R, Wen DR (2001) Sentinel lymph nodes show profound downregulation of antigen-presenting cells of the paracortex: implications for tumor biology and treatment. Mod Pathol 14:604–608

    PubMed  CAS  Google Scholar 

  • Combadiere B, Mahe B (2008) Particle-based vaccines for transcutaneous vaccination. Comp Immunol Microbiol Infect Dis 31:293–315

    PubMed  Google Scholar 

  • Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J, Boudinot P, Hosmalin A, Schwartz-Cornil I, Dalod M (2010) The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 207:1283–1292

    PubMed  CAS  Google Scholar 

  • de Gruijl TD, Luykx-de Bakker SA, Tillman BW, van den Eertwegh AJ, Buter J, Lougheed SM, van der Bij GJ, Safer AM, Haisma HJ, Curiel DT, Scheper RJ, Pinedo HM, Gerritsen WR (2002) Prolonged maturation and enhanced transduction of dendritic cells migrated from human skin explants after in situ delivery of CD40-targeted adenoviral vectors. J Immunol 169:5322–5331

    PubMed  Google Scholar 

  • de Gruijl TD, Pinedo HM, Scheper RJ (2004) Immunotherapy of cancer through dendritic cell-targeted gene transfer. In: Curiel DT, Douglass JT (eds) Cancer gene therapy. Humana Press, Totowa, pp 143–172

    Google Scholar 

  • de Gruijl TD, Sombroek CC, Lougheed SM, Oosterhoff D, Buter J, van den Eertwegh AJ, Scheper RJ, Pinedo HM (2006) A postmigrational switch among skin-derived dendritic cells to a macrophage-like phenotype is predetermined by the intracutaneous cytokine balance. J Immunol 176:7232–7242

    PubMed  Google Scholar 

  • Dranoff G (2003) GM-CSF-secreting melanoma vaccines. Oncogene 22:3188–3192

    PubMed  CAS  Google Scholar 

  • Dranoff G (2009) Targets of protective tumor immunity. Ann NY Acad Sci 1174:74–80

    PubMed  CAS  Google Scholar 

  • Dzionek A, Sohma Y, Nagafune J, Cella M, Colonna M, Facchetti F, Gunther G, Johnston I, Lanzavecchia A, Nagasaka T, Okada T, Vermi W, Winkels G, Yamamoto T, Zysk M, Yamaguchi Y, Schmitz J (2001) BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J Exp Med 194:1823–1834

    PubMed  CAS  Google Scholar 

  • Edele F, Molenaar R, Gutle D, Dudda JC, Jakob T, Homey B, Mebius R, Hornef M, Martin SF (2008) Cutting edge: instructive role of peripheral tissue cells in the imprinting of T cell homing receptor patterns. J Immunol 181:3745–3749

    PubMed  CAS  Google Scholar 

  • Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3:611–618

    PubMed  CAS  Google Scholar 

  • Eggermont AM (2009) Immunostimulation versus immunosuppression after multiple vaccinations: the woes of therapeutic vaccine development. Clin Cancer Res 15:6745–6747

    PubMed  CAS  Google Scholar 

  • Engering A, van Vliet SJ, Hebeda K, Jackson DG, Prevo R, Singh SK, Geijtenbeek TB, van Krieken H, van Kooyk Y (2004) Dynamic populations of dendritic cell-specific ICAM-3 grabbing nonintegrin-positive immature dendritic cells and liver/lymph node-specific ICAM-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes. Am J Pathol 164:1587–1595

    PubMed  CAS  Google Scholar 

  • Enk AH, Jonuleit H, Saloga J, Knop J (1997) Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73:309–316

    PubMed  CAS  Google Scholar 

  • Enk AH, Katz SI (1992) Identification and induction of keratinocyte-derived IL-10. J Immunol 149:92–95

    PubMed  CAS  Google Scholar 

  • Essner R, Kojima M (2002) Dendritic cell function in sentinel nodes. Oncology (Williston Park) 16:27–31

    Google Scholar 

  • Fanning SL, George TC, Feng D, Feldman SB, Megjugorac NJ, Izaguirre AG, Fitzgerald-Bocarsly P (2006) Receptor cross-linking on human plasmacytoid dendritic cells leads to the regulation of IFN-alpha production. J Immunol 177:5829–5839

    PubMed  CAS  Google Scholar 

  • Faries MB, Hsueh EC, Ye X, Hoban M, Morton DL (2009) Effect of granulocyte/macrophage colony-stimulating factor on vaccination with an allogeneic whole-cell melanoma vaccine. Clin Cancer Res 15:7029–7035

    PubMed  CAS  Google Scholar 

  • Farrand KJ, Dickgreber N, Stoitzner P, Ronchese F, Petersen TR, Hermans IF (2009) Langerin+ CD8alpha+ dendritic cells are critical for cross-priming and IL-12 production in response to systemic antigens. J Immunol 183:7732–7742

    PubMed  CAS  Google Scholar 

  • Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte–macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25:2546–2553

    PubMed  CAS  Google Scholar 

  • Flacher V, Tripp CH, Stoitzner P, Haid B, Ebner S, Del Frari B, Koch F, Park CG, Steinman RM, Idoyaga J, Romani N (2010) Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis. J Invest Dermatol 130:755–762

    PubMed  CAS  Google Scholar 

  • Fourcade J, Kudela P, Sun Z, Shen H, Land SR, Lenzner D, Guillaume P, Luescher IF, Sander C, Ferrone S, Kirkwood JM, Zarour HM (2009) PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. J Immunol 182:5240–5249

    PubMed  CAS  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    PubMed  CAS  Google Scholar 

  • Geissmann F, Dieu-Nosjean MC, Dezutter C, Valladeau J, Kayal S, Leborgne M, Brousse N, Saeland S, Davoust J (2002) Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med 196:417–430

    PubMed  CAS  Google Scholar 

  • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    PubMed  CAS  Google Scholar 

  • Gerlini G, Di Gennaro P, Mariotti G, Urso C, Chiarugi A, Pimpinelli N, Borgognoni L (2010) Indoleamine 2, 3-dioxygenase+ cells correspond to the BDCA2+ plasmacytoid dendritic cells in human melanoma sentinel nodes. J Invest Dermatol 130:898–901

    PubMed  CAS  Google Scholar 

  • Gerlini G, Mariotti G, Chiarugi A, Di Gennaro P, Caporale R, Parenti A, Cavone L, Tun-Kyi A, Prignano F, Saccardi R, Borgognoni L, Pimpinelli N (2008) Induction of CD83+ CD14+ nondendritic antigen-presenting cells by exposure of monocytes to IFN-alpha. J Immunol 181:2999–3008

    PubMed  CAS  Google Scholar 

  • Gerlini G, Tun-Kyi A, Dudli C, Burg G, Pimpinelli N, Nestle FO (2004) Metastatic melanoma secreted IL-10 down-regulates CD1 molecules on dendritic cells in metastatic tumor lesions. Am J Pathol 165:1853–1863

    PubMed  CAS  Google Scholar 

  • Gerlini G, Urso C, Mariotti G, Di Gennaro P, Palli D, Brandani P, Salvadori A, Pimpinelli N, Reali UM, Borgognoni L (2007) Plasmacytoid dendritic cells represent a major dendritic cell subset in sentinel lymph nodes of melanoma patients and accumulate in metastatic nodes. Clin Immunol 125:184–193

    PubMed  CAS  Google Scholar 

  • Gershenwald JE, Thompson W, Mansfield PF, Lee JE, Colome MI, Tseng CH, Lee JJ, Balch CM, Reintgen DS, Ross MI (1999) Multi-institutional melanoma lymphatic mapping experience: the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J Clin Oncol 17:976–983

    PubMed  CAS  Google Scholar 

  • Ghebeh H, Mohammed S, Al Omair A, Qattan A, Lehe C, Al Qudaihi G, Elkum N, Alshabanah M, Bin AS, Tulbah A, Ajarim D, Al Tweigeri T, Dermime S (2006) The B7–H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8:190–198

    PubMed  CAS  Google Scholar 

  • Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, Helft J, Ochando J, Kissenpfennig A, Malissen B, Grisotto M, Snoeck H, Randolph G, Merad M (2007) Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J Exp Med 204:3133–3146

    PubMed  CAS  Google Scholar 

  • Glaspy J, Ribas A, Chmielowski B (2009) Interferon alfa in the postsurgical management of high-risk melanoma: is it worth it? J Clin Oncol 27:2896–2897

    PubMed  Google Scholar 

  • Gogas H, Ioannovich J, Dafni U, Stavropoulou-Giokas C, Frangia K, Tsoutsos D, Panagiotou P, Polyzos A, Papadopoulos O, Stratigos A, Markopoulos C, Bafaloukos D, Pectasides D, Fountzilas G, Kirkwood JM (2006) Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 354:709–718

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Pritsker A, Pack M, Shimeliovich I, Arrighi JF, Park CG, Trumpfheller C, Piguet V, Moran TM, Steinman RM (2005) Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol 175:4265–4273

    PubMed  CAS  Google Scholar 

  • Green DS, Bodman-Smith MD, Dalgleish AG, Fischer MD (2007) Phase I/II study of topical imiquimod and intralesional interleukin-2 in the treatment of accessible metastases in malignant melanoma. Br J Dermatol 156:337–345

    PubMed  CAS  Google Scholar 

  • Green DS, Dalgleish AG, Belonwu N, Fischer MD, Bodman-Smith MD (2008) Topical imiquimod and intralesional interleukin-2 increase activated lymphocytes and restore the Th1/Th2 balance in patients with metastatic melanoma. Br J Dermatol 159:606–614

    PubMed  CAS  Google Scholar 

  • Gregor PD, Wolchok JD, Ferrone CR, Buchinshky H, Guevara-Patino JA, Perales MA, Mortazavi F, Bacich D, Heston W, Latouche JB, Sadelain M, Allison JP, Scher HI, Houghton AN (2004) CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine 22:1700–1708

    PubMed  CAS  Google Scholar 

  • Gursel M, Verthelyi D, Klinman DM (2002) CpG oligodeoxynucleotides induce human monocytes to mature into functional dendritic cells. Eur J Immunol 32:2617–2622

    PubMed  CAS  Google Scholar 

  • Haenssle H, Buhl T, Knudsen S, Krueger U, Rosenberger A, Reich K, Neumann C (2008) CD40 ligation during dendritic cell maturation reduces cell death and prevents interleukin-10-induced regression to macrophage-like monocytes. Exp Dermatol 17:177–187

    PubMed  CAS  Google Scholar 

  • Haining WN, Davies J, Kanzler H, Drury L, Brenn T, Evans J, Angelosanto J, Rivoli S, Russell K, George S, Sims P, Neuberg D, Li X, Kutok J, Morgan J, Wen P, Demetri G, Coffman RL, Nadler LM (2008) CpG oligodeoxynucleotides alter lymphocyte and dendritic cell trafficking in humans. Clin Cancer Res 14:5626–5634

    PubMed  CAS  Google Scholar 

  • Hangalapura BN, Oosterhoff D, Aggarwal S, Wijnands PGJTB, van de Ven R, Santegoets SJAM, van den Tol MP, Hooijberg E, Pereboev A, van den Eertwegh AJM, Curiel DT, Scheper RJ, de Gruijl TD (2010) Selective transduction of dendritic cells in human lymph nodes and superior induction of high-avidity melanoma-reactive cytotoxic T cells by a CD40-targeted adenovirus. J Immunother 33:706–715

    PubMed  CAS  Google Scholar 

  • Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, Mack B, Giese T, Gires O, Endres S, Hartmann G (2003) Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res 63:6478–6487

    PubMed  CAS  Google Scholar 

  • Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, Nussenzweig MC (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194:769–779

    PubMed  CAS  Google Scholar 

  • Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A, Buettner R, Proia D, Kowolik CM, Xin H, Armstrong B, Bebernitz G, Weng S, Wang L, Ye M, McEachern K, Chen H, Morosini D, Bell K, Alimzhanov M, Ioannidis S, McCoon P, Cao ZA, Yu H, Jove R, Zinda M (2009) The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16:487–497

    PubMed  CAS  Google Scholar 

  • Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, Davis T, Henry-Spires R, MacRae S, Willman A, Padera R, Jaklitsch MT, Shankar S, Chen TC, Korman A, Allison JP, Dranoff G (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 100:4712–4717

    PubMed  CAS  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    PubMed  CAS  Google Scholar 

  • Hofmann MA, Kors C, Audring H, Walden P, Sterry W, Trefzer U (2008) Phase 1 evaluation of intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J Immunother 31:520–527

    PubMed  CAS  Google Scholar 

  • Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537

    PubMed  CAS  Google Scholar 

  • Huang D, Pereboev AV, Korokhov N, He R, Larocque L, Gravel C, Jaentschke B, Tocchi M, Casley WL, Lemieux M, Curiel DT, Chen W, Li X (2008) Significant alterations of biodistribution and immune responses in Balb/c mice administered with adenovirus targeted to CD40(+) cells. Gene Ther 15:298–308

    PubMed  CAS  Google Scholar 

  • Huang RR, Wen DR, Guo J, Giuliano AE, Nguyen M, Offodile R, Stern S, Turner R, Cochran AJ (2000) Selective modulation of paracortical dendritic cells and T-lymphocytes in breast cancer sentinel lymph nodes. Breast J 6:225–232

    PubMed  Google Scholar 

  • Hunter TB, Alsarraj M, Gladue RP, Bedian V, Antonia SJ (2007) An agonist antibody specific for CD40 induces dendritic cell maturation and promotes autologous anti-tumour T-cell responses in an in vitro mixed autologous tumour cell/lymph node cell model. Scand J Immunol 65:479–486

    PubMed  CAS  Google Scholar 

  • Ichikawa HT, Williams LP, Segal BM (2002) Activation of APCs through CD40 or Toll-like receptor 9 overcomes tolerance and precipitates autoimmune disease. J Immunol 169:2781–2787

    PubMed  CAS  Google Scholar 

  • Ishigami S, Ueno S, Matsumoto M, Okumura H, Arigami T, Uchikado Y, Setoyama T, Arima H, Sasaki K, Kitazono M, Shinchi H, Kijima Y, Natsugoe S (2010) Prognostic value of CD208-positive cell infiltration in gastric cancer. Cancer Immunol Immunother 59:389–395

    PubMed  CAS  Google Scholar 

  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297

    PubMed  CAS  Google Scholar 

  • Iwamoto M, Shinohara H, Miyamoto A, Okuzawa M, Mabuchi H, Nohara T, Gon G, Toyoda M, Tanigawa N (2003) Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer 104:92–97

    PubMed  CAS  Google Scholar 

  • Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC (1998) Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J Immunol 161:3042–3049

    PubMed  CAS  Google Scholar 

  • Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31:3388–3393

    PubMed  CAS  Google Scholar 

  • Jinushi M, Nakazaki Y, Dougan M, Carrasco DR, Mihm M, Dranoff G (2007) MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and anti-inflammatory activities of GM-CSF. J Clin Invest 117:1902–1913

    PubMed  CAS  Google Scholar 

  • Johnson TS, Mahnke K, Storn V, Schonfeld K, Ring S, Nettelbeck DM, Haisma HJ, Le Gall F, Kontermann RE, Enk AH (2008) Inhibition of melanoma growth by targeting of antigen to dendritic cells via an anti-DEC-205 single-chain fragment variable molecule. Clin Cancer Res 14:8169–8177

    PubMed  CAS  Google Scholar 

  • Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJ, Hart DN, Radford KJ (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207:1247–1260

    PubMed  CAS  Google Scholar 

  • Jonuleit H, Schmitt E, Steinbrink K, Enk AH (2001) Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol 22:394–400

    PubMed  CAS  Google Scholar 

  • Kass E, Panicali DL, Mazzara G, Schlom J, Greiner JW (2001) Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigen-presenting cells and acts as an immunoadjuvant. Cancer Res 61:206–214

    PubMed  CAS  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    PubMed  CAS  Google Scholar 

  • Kim YS, Kim YJ, Lee JM, Han SH, Ko HJ, Park HJ, Pereboev A, Nguyen HH, Kang CY (2010) CD40-targeted recombinant adenovirus significantly enhances the efficacy of DC and B cell-based anti-tumor vaccines. Hum Gene Ther 21:1697–1706

    PubMed  CAS  Google Scholar 

  • Kirkwood JM, Lorigan P, Hersey P, Hauschild A, Robert C, McDermott D, Marshall MA, Gomez-Navarro J, Liang JQ, Bulanhagui CA (2010) Phase II trial of tremelimumab (CP-675, 206) in patients with advanced refractory or relapsed melanoma. Clin Cancer Res 16:1042–1048

    PubMed  CAS  Google Scholar 

  • Klechevsky E, Liu M, Morita R, Banchereau R, Thompson-Snipes L, Palucka AK, Ueno H, Banchereau J (2009) Understanding human myeloid dendritic cell subsets for the rational design of novel vaccines. Hum Immunol 70:281–288

    PubMed  CAS  Google Scholar 

  • Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L, Briere F, Chaussabel D, Zurawski G, Palucka AK, Reiter Y, Banchereau J, Ueno H (2008) Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29:497–510

    PubMed  CAS  Google Scholar 

  • Korokhov N, Noureddini SC, Curiel DT, Santegoets SJ, Scheper RJ, de Gruijl TD (2005) A single-component CD40-targeted adenovirus vector displays highly efficient transduction and activation of dendritic cells in a human skin substrate system. Mol Pharm 2:218–223

    PubMed  CAS  Google Scholar 

  • Kortylewski M, Kujawski M, Herrmann A, Yang C, Wang L, Liu Y, Salcedo R, Yu H (2009a) Toll-like receptor 9 activation of signal transducer and activator of transcription 3 constrains its agonist-based immunotherapy. Cancer Res 69:2497–2505

    PubMed  CAS  Google Scholar 

  • Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M, Lee H, Scuto A, Liu Y, Yang C, Deng J, Soifer HS, Raubitschek A, Forman S, Rossi JJ, Pardoll DM, Jove R, Yu H (2009b) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 27:925–932

    PubMed  CAS  Google Scholar 

  • Koschella M, Voehringer D, Pircher H (2004) CD40 ligation in vivo induces bystander proliferation of memory phenotype CD8 T cells. J Immunol 172:4804–4811

    PubMed  CAS  Google Scholar 

  • Krieg AM (2001) Now I know my CpGs. Trends Microbiol 9:249–252

    PubMed  CAS  Google Scholar 

  • Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760

    PubMed  CAS  Google Scholar 

  • Krieg AM (2008) Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 27:161–167

    PubMed  CAS  Google Scholar 

  • Lacelle MG, Jensen SM, Fox BA (2009) Partial CD4 depletion reduces regulatory T cells induced by multiple vaccinations and restores therapeutic efficacy. Clin Cancer Res 15:6881–6890

    PubMed  CAS  Google Scholar 

  • Ladanyi A, Kiss J, Somlai B, Gilde K, Fejos Z, Mohos A, Gaudi I, Timar J (2007) Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 56:1459–1469

    PubMed  Google Scholar 

  • Lebre MC, van der Aar AM, van Baarsen L, van Capel TM, Schuitemaker JH, Kapsenberg ML, de Jong EC (2007) Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol 127:331–341

    PubMed  CAS  Google Scholar 

  • Lee JH, Torisu-Itakara H, Cochran AJ, Kadison A, Huynh Y, Morton DL, Essner R (2005) Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin Cancer Res 11:107–112

    PubMed  CAS  Google Scholar 

  • Lee JR, Dalton RR, Messina JL, Sharma MD, Smith DM, Burgess RE, Mazzella F, Antonia SJ, Mellor AL, Munn DH (2003) Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab Invest 83:1457–1466

    PubMed  CAS  Google Scholar 

  • Li B, VanRoey M, Wang C, Chen TH, Korman A, Jooss K (2009) Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor-secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin Cancer Res 15:1623–1634

    PubMed  CAS  Google Scholar 

  • Liu C, Lou Y, Lizee G, Qin H, Liu S, Rabinovich B, Kim GJ, Wang YH, Ye Y, Sikora AG, Overwijk WW, Liu YJ, Wang G, Hwu P (2008) Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J Clin Invest 118:1165–1175

    PubMed  CAS  Google Scholar 

  • Macagno A, Napolitani G, Lanzavecchia A, Sallusto F (2007) Duration, combination and timing: the signal integration model of dendritic cell activation. Trends Immunol 28:227–233

    PubMed  CAS  Google Scholar 

  • Mahnke K, Qian Y, Fondel S, Brueck J, Becker C, Enk AH (2005) Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Res 65:7007–7012

    PubMed  CAS  Google Scholar 

  • Mancuso G, Gambuzza M, Midiri A, Biondo C, Papasergi S, Akira S, Teti G, Beninati C (2009) Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol 10:587–594

    PubMed  CAS  Google Scholar 

  • Mathers AR, Janelsins BM, Rubin JP, Tkacheva OA, Shufesky WJ, Watkins SC, Morelli AE, Larregina AT (2009) Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses. J Immunol 182:921–933

    PubMed  CAS  Google Scholar 

  • Mathers AR, Larregina AT (2006) Professional antigen-presenting cells of the skin. Immunol Res 36:127–136

    PubMed  CAS  Google Scholar 

  • Melief CJ, Van Der Burg SH, Toes RE, Ossendorp F, Offringa R (2002) Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes. Immunol Rev 188:177–182

    PubMed  CAS  Google Scholar 

  • Mellor AL, Munn DH (2008) Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol 8:74–80

    PubMed  CAS  Google Scholar 

  • Merad M, Ginhoux F, Collin M (2008) Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8:935–947

    PubMed  CAS  Google Scholar 

  • Meyer-Wentrup F, Benitez-Ribas D, Tacken PJ, Punt CJ, Figdor CG, de Vries IJ, Adema GJ (2008) Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-alpha production. Blood 111:4245–4253

    PubMed  CAS  Google Scholar 

  • Mikszta JA, Laurent PE (2008) Cutaneous delivery of prophylactic and therapeutic vaccines: historical perspective and future outlook. Expert Rev Vaccines 7:1329–1339

    PubMed  Google Scholar 

  • Mitsui H, Okamoto T, Kanzaki M, Inozume T, Shibagaki N, Shimada S (2010) Intradermal injections of polyarginine-containing immunogenic antigens preferentially elicit Tc1 and Th1 activation and antitumour immunity. Br J Dermatol 162:29–41

    PubMed  CAS  Google Scholar 

  • Mohty M, Olive D, Gaugler B (2004) Plasmacytoid DCs and cancer: a new role for an enigmatic cell. Trends Immunol 25:397–398

    PubMed  CAS  Google Scholar 

  • Molenkamp BG, Sluijter BJR, van Leuwen PAM, Santegoets SJAM, Meijer S, Wijnands PGJT, Haanen JBAG, van den Eertwegh AJM, Scheper RJ, de Gruijl TD (2008) Local administration of PF-3512676 CpG-B instigates tumor-specific CD8(+) T-cell reactivity in melanoma patients. Clin Cancer Res 14:4532–4542

    PubMed  CAS  Google Scholar 

  • Molenkamp BG, van Leeuwen PAM, Meijer S, Sluijter BJR, Wijnands PGJT, Baars A, van den Eertwegh AJM, Scheper RJ, de Grujil TD (2007) Intradermal CpG-B activates both plasmacytoid and myeloid dendritic cells in the sentinel lymph node of melanoma patients. Clin Cancer Res 13:2961–2969

    PubMed  CAS  Google Scholar 

  • Molenkamp BG, van Leeuwen PAM, van den Eertwegh AJM, Sluijter BJR, Scheper RJ, Meijer S, de Gruijl TD (2006) Immunomodulation of the melanoma sentinel lymph node: A novel adjuvant therapeutic option. Immunobiology 211:651–661

    PubMed  CAS  Google Scholar 

  • Molenkamp BG, Vuylsteke RJCL, van Leeuwen PAM, Meijer S, Vos W, Wijnands PGJT, Scheper RJ, de Gruijl TD (2005) Matched skin and sentinel lymph node samples of melanoma patients reveal exclusive migration of mature dendritic cells. Am J Pathol 167:1301–1307

    PubMed  Google Scholar 

  • Mora JR, Cheng G, Picarella D, Briskin M, Buchanan N, von Andrian UH (2005) Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J Exp Med 201:303–316

    PubMed  CAS  Google Scholar 

  • Morelli AE, Rubin JP, Erdos G, Tkacheva OA, Mathers AR, Zahorchak AF, Thomson AW, Falo LD Jr, Larregina AT (2005) CD4+ T cell responses elicited by different subsets of human skin migratory dendritic cells. J Immunol 175:7905–7915

    PubMed  CAS  Google Scholar 

  • Morton DL, Cochran AJ, Thompson JF (2008) The rationale for sentinel-node biopsy in primary melanoma. Nat Clin Pract Oncol 5:510–511

    PubMed  Google Scholar 

  • Mouries J, Moron G, Schlecht G, Escriou N, Dadaglio G, Leclerc C (2008) Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation. Blood 112:3713–3722

    PubMed  CAS  Google Scholar 

  • Munn DH, Mellor AL (2006) The tumor-draining lymph node as an immune-privileged site. Immunol Rev 213:146–158

    PubMed  Google Scholar 

  • Munn DH, Mellor AL (2007) Indoleamine 2, 3-dioxygenase and tumor-induced tolerance. J Clin Invest 117:1147–1154

    PubMed  CAS  Google Scholar 

  • Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor AL (2004a) Expression of indoleamine 2, 3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290

    PubMed  CAS  Google Scholar 

  • Munn DH, Sharma MD, Mellor AL (2004b) Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2, 3-dioxygenase activity in dendritic cells. J Immunol 172:4100–4110

    PubMed  CAS  Google Scholar 

  • Nagaraj S, Collazo M, Corzo CA, Youn JI, Ortiz M, Quiceno D, Gabrilovich DI (2009) Regulatory myeloid suppressor cells in health and disease. Cancer Res 69:7503–7506

    PubMed  CAS  Google Scholar 

  • Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679–691

    PubMed  CAS  Google Scholar 

  • Nestle FO, Nickoloff BJ (2007) Deepening our understanding of immune sentinels in the skin. J Clin Invest 117:2382–2385

    PubMed  CAS  Google Scholar 

  • Nickoloff BJ, Fivenson DP, Kunkel SL, Strieter RM, Turka LA (1994) Keratinocyte interleukin-10 expression is upregulated in tape-stripped skin, poison ivy dermatitis, and Sezary syndrome, but not in psoriatic plaques. Clin Immunol Immunopathol 73:63–68

    PubMed  CAS  Google Scholar 

  • Ochoa MT, Loncaric A, Krutzik SR, Becker TC, Modlin RL (2008) “Dermal dendritic cells” comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages. J Invest Dermatol 128:2225–2231

    PubMed  CAS  Google Scholar 

  • Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N, Mizuno T, Yoriki R, Kashizuka H, Yane K, Tsushima F, Otsuki N, Yagita H, Azuma M, Nakajima Y (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 11:2947–2953

    PubMed  CAS  Google Scholar 

  • Ouwehand K, Santegoets SJ, Bruynzeel DP, Scheper RJ, de Gruijl TD, Gibbs S (2008) CXCL12 is essential for migration of activated Langerhans cells from epidermis to dermis. Eur J Immunol 38:3050–3059

    PubMed  CAS  Google Scholar 

  • Ouwehand K, Scheper RJ, de Gruijl TD, Gibbs S (2010) Epidermis-to-dermis migration of immature Langerhans cells upon topical irritant exposure is dependent on CCL2 and CCL5. Eur J Immunol 40:2026–2034

    PubMed  CAS  Google Scholar 

  • Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227:221–233

    PubMed  CAS  Google Scholar 

  • Peguet-Navarro J, Sportouch M, Popa I, Berthier O, Schmitt D, Portoukalian J (2003) Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J Immunol 170:3488–3494

    PubMed  CAS  Google Scholar 

  • Pfeffer LM, Dinarello CA, Herberman RB, Williams BR, Borden EC, Bordens R, Walter MR, Nagabhushan TL, Trotta PP, Pestka S (1998) Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res 58:2489–2499

    PubMed  CAS  Google Scholar 

  • Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, Duray PH, Steinberg SM, Allison JP, Davis TA, Rosenberg SA (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377

    PubMed  CAS  Google Scholar 

  • Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E, Le Moine A, Faure F, Donckier V, Sancho D, Cerundolo V, Bonnet D, Reis e Sousa (2010) Characterization of human DNGR-1 + BDCA3 + leukocytes as putative equivalents of mouse CD8alpha + dendritic cells. J Exp Med 207:1261–1271

    Google Scholar 

  • Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    PubMed  CAS  Google Scholar 

  • Randow F, Syrbe U, Meisel C, Krausch D, Zuckermann H, Platzer C, Volk HD (1995) Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J Exp Med 181:1887–1892

    PubMed  CAS  Google Scholar 

  • Ray CM, Kluk M, Grin CM, Grant-Kels JM (2005) Successful treatment of malignant melanoma in situ with topical 5% imiquimod cream. Int J Dermatol 44:428–434

    PubMed  Google Scholar 

  • Reddy ST, Swartz MA, Hubbell JA (2006) Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol 27:573–579

    PubMed  CAS  Google Scholar 

  • Riboldi E, Daniele R, Cassatella MA, Sozzani S, Bosisio D (2009) Engagement of BDCA-2 blocks TRAIL-mediated cytotoxic activity of plasmacytoid dendritic cells. Immunobiology 214:868–876

    PubMed  CAS  Google Scholar 

  • Ridolfi L, Ridolfi R, Ascari-Raccagni A, Fabbri M, Casadei S, Gatti A, Trevisan G, Righini MG (2001) Intralesional granulocyte–monocyte colony-stimulating factor followed by subcutaneous interleukin-2 in metastatic melanoma: a pilot study in elderly patients. J Eur Acad Dermatol Venereol 15:218–223

    PubMed  CAS  Google Scholar 

  • Rieger R, Kipps TJ (2003) CpG oligodeoxynucleotides enhance the capacity of adenovirus-mediated CD154 gene transfer to generate effective B cell lymphoma vaccines. Cancer Res 63:4128–4135

    PubMed  CAS  Google Scholar 

  • Rivas JM, Ullrich SE (1992) Systemic suppression of delayed-type hypersensitivity by supernatants from UV-irradiated keratinocytes. An essential role for keratinocyte-derived IL-10. J Immunol 149:3865–3871

    PubMed  CAS  Google Scholar 

  • Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, Xu H, Vivier E, Sellars M, Pierre P, Sharp FR, Chan S, Kastner P, Dalod M (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9:R17

    PubMed  Google Scholar 

  • Romani N, Clausen BE, Stoitzner P (2010) Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev 234:120–141

    PubMed  CAS  Google Scholar 

  • Romero P, Cerottini JC, Speiser DE (2006) The human T cell response to melanoma antigens. Adv Immunol 92:187–224

    PubMed  CAS  Google Scholar 

  • Romero P, Dunbar PR, Valmori D, Pittet M, Ogg GS, Rimoldi D, Chen JL, Lienard D, Cerottini JC, Cerundolo V (1998) Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. Journal of Experimental Medicine 188:1641–1650

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21:233–240

    PubMed  CAS  Google Scholar 

  • Salio M, Cella M, Vermi W, Facchetti F, Palmowski MJ, Smith CL, Shepherd D, Colonna M, Cerundolo V (2003) Plasmacytoid dendritic cells prime IFN-gamma-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur J Immunol 33:1052–1062

    PubMed  CAS  Google Scholar 

  • Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, Carlyle JR, Reis e Sousa (2008) Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 118:2098–2110

    Google Scholar 

  • Santegoets SJ, Bontkes HJ, Stam AG, Bhoelan F, Ruizendaal JJ, van den Eertwegh AJ, Hooijberg E, Scheper RJ, de Gruijl TD (2008) Inducing antitumor T cell immunity: comparative functional analysis of interstitial versus Langerhans dendritic cells in a human cell line model. J Immunol 180:4540–4549

    PubMed  CAS  Google Scholar 

  • Santegoets SJ, Gibbs S, Kroeze K, Van de Van R, Scheper RJ, Borrebaeck CA, de Gruijl TD, Lindstedt M (2008b) Transcriptional profiling of human skin-resident Langerhans cells and CD1a+ dermal dendritic cells: differential activation states suggest distinct functions. J Leukoc Biol 84:143–151

    PubMed  Google Scholar 

  • Sarnaik AA, Weber JS (2009) Recent advances using anti-CTLA-4 for the treatment of melanoma. Cancer J 15:169–173

    PubMed  CAS  Google Scholar 

  • Schmidt C (2007) News: clinical setbacks for toll-like receptor 9 agonists in cancer. Nat Biotechnol 25:825–826

    PubMed  CAS  Google Scholar 

  • Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393:480–483

    PubMed  CAS  Google Scholar 

  • Schon MP, Schon M (2008) TLR7 and TLR8 as targets in cancer therapy. Oncogene 27:190–199

    PubMed  CAS  Google Scholar 

  • Sen D, Forrest L, Kepler TB, Parker I, Cahalan MD (2010) Selective and site-specific mobilization of dermal dendritic cells and Langerhans cells by Th1- and Th2-polarizing adjuvants. Proc Natl Acad Sci USA 107:8334–8339

    PubMed  CAS  Google Scholar 

  • Serra P, Amrani A, Yamanouchi J, Han B, Thiessen S, Utsugi T, Verdaguer J, Santamaria P (2003) CD40 ligation releases immature dendritic cells from the control of regulatory CD4+ CD25+ T cells. Immunity 19:877–889

    PubMed  CAS  Google Scholar 

  • Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, Azuma M, Blazar BR, Mellor AL, Munn DH (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2, 3-dioxygenase. J Clin Invest 117:2570–2582

    PubMed  CAS  Google Scholar 

  • Sharma MD, Hou DY, Liu Y, Koni PA, Metz R, Chandler P, Mellor AL, He Y, Munn DH (2009) Indoleamine 2, 3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113:6102–6111

    PubMed  CAS  Google Scholar 

  • Simmons AD, Moskalenko M, Creson J, Fang J, Yi S, VanRoey MJ, Allison JP, Jooss K (2008) Local secretion of anti-CTLA-4 enhances the therapeutic efficacy of a cancer immunotherapy with reduced evidence of systemic autoimmunity. Cancer Immunol Immunother 57:1263–1270

    PubMed  CAS  Google Scholar 

  • Skrzeczynska-Moncznik J, Wawro K, Stefanska A, Oleszycka E, Kulig P, Zabel BA, Sulkowski M, Kapinska-Mrowiecka M, Czubak-Macugowska M, Butcher EC, Cichy J (2009) Potential role of chemerin in recruitment of plasmacytoid dendritic cells to diseased skin. Biochem Biophys Res Commun 380:323–327

    PubMed  CAS  Google Scholar 

  • Slingluff CL Jr, Petroni GR, Olson WC, Smolkin ME, Ross MI, Haas NB, Grosh WW, Boisvert ME, Kirkwood JM, Chianese-Bullock KA (2009) Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res 15:7036–7044

    PubMed  CAS  Google Scholar 

  • Smalley KS (2010) PLX-4032, a small-molecule B-Raf inhibitor for the potential treatment of malignant melanoma. Curr Opin Investig Drugs 11:699–706

    PubMed  CAS  Google Scholar 

  • Sparber F, Tripp CH, Hermann M, Romani N, Stoitzner P (2010) Langerhans cells and dermal dendritic cells capture protein antigens in the skin: possible targets for vaccination through the skin. Immunobiology 215:770–779

    PubMed  CAS  Google Scholar 

  • Stanley MA (2002) Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol 27:571–577

    PubMed  CAS  Google Scholar 

  • Starz H, Balda BR (2007) Benefit of sentinel lymphadenectomy for patients with nonulcerated cutaneous melanomas in the Breslow range between 0.76 and 1 mm: a follow-up study of 148 patients. Int J Cancer 121:689–693

    PubMed  CAS  Google Scholar 

  • Statius Muller MG, Borgstein PJ, Pijpers R, van Leeuwen PA, van Diest PJ, Gupta A, Meijer S (2000) Reliability of the sentinel node procedure in melanoma patients: analysis of failures after long-term follow-up. Ann Surg Oncol 7:461–468

    PubMed  CAS  Google Scholar 

  • Stoitzner P, Green LK, Jung JY, Price KM, Tripp CH, Malissen B, Kissenpfennig A, Hermans IF, Ronchese F (2008) Tumor immunotherapy by epicutaneous immunization requires langerhans cells. J Immunol 180:1991–1998

    PubMed  CAS  Google Scholar 

  • Stoitzner P, Sparber F, Tripp CH (2010a) Langerhans cells as targets for immunotherapy against skin cancer. Immunol Cell Biol 88:431–437

    PubMed  Google Scholar 

  • Stoitzner P, Stingl G, Merad M, Romani N (2010b) Langerhans cells at the interface of medicine, science, and industry. J Invest Dermatol 130:331–335

    PubMed  CAS  Google Scholar 

  • Sun X, Hodge LM, Jones HP, Tabor L, Simecka JW (2002) Co-expression of granulocyte–macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine 20:1466–1474

    PubMed  CAS  Google Scholar 

  • Tacken PJ, de Vries IJ, Torensma R, Figdor CG (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7:790–802

    PubMed  CAS  Google Scholar 

  • Teunissen MBM, Koomen CW, Jansen J, de Waal MR, Schmitt E, Van den Wijngaard RM, Das PK, Bos JD (1997) In contrast to their murine counterparts, normal human keratinocytes and human epidermoid cell lines A431 and HaCaT fail to express IL-10 mRNA and protein. Clin Exp Immunol 107:213–223

    PubMed  CAS  Google Scholar 

  • Teunissen MBM, Haniffa M, Collin MP (2011) Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design. Curr Top Microbiol Immunol 351:25–76

    Google Scholar 

  • Thacker EE, Nakayama M, Smith BF, Bird RC, Muminova Z, Strong TV, Timares L, Korokhov N, O’Neill AM, de Gruijl TD, Glasgow JN, Tani K, Curiel DT (2009) A genetically engineered adenovirus vector targeted to CD40 mediates transduction of canine dendritic cells and promotes antigen-specific immune responses in vivo. Vaccine 27:7116–7124

    PubMed  CAS  Google Scholar 

  • Tillman BW, de Gruijl TD, Luykx-de Bakker SA, Scheper RJ, Pinedo HM, Curiel TJ, Gerritsen WR, Curiel DT (1999) Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J Immunol 162:6378–6383

    PubMed  CAS  Google Scholar 

  • Tillman BW, Hayes TL, DeGruijl TD, Douglas JT, Curiel DT (2000) Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res 60:5456–5463

    PubMed  CAS  Google Scholar 

  • Timares L, Douglas JT, Tillman BW, Krasnykh V, Curiel DT (2004) Adenovirus-mediated gene delivery to dendritic cells. Methods Mol Biol 246:139–154

    PubMed  CAS  Google Scholar 

  • Toka FN, Gierynska M, Suvas S, Schoenberger SP, Rouse BT (2005) Rescue of memory CD8+ T cell reactivity in peptide/TLR9 ligand immunization by codelivery of cytokines or CD40 ligation. Virology 331:151–158

    PubMed  CAS  Google Scholar 

  • Toriyama K, Wen DR, Paul E, Cochran AJ (1993) Variations in the distribution, frequency, and phenotype of Langerhans cells during the evolution of malignant-melanoma of the skin. J Investig Dermatol 100:S269–S273

    Google Scholar 

  • Tuve S, Chen BM, Liu Y, Cheng TL, Toure P, Sow PS, Feng Q, Kiviat N, Strauss R, Ni S, Li ZY, Roffler SR, Lieber A (2007) Combination of tumor site-located CTL-associated antigen-4 blockade and systemic regulatory T-cell depletion induces tumor-destructive immune responses. Cancer Res 67:5929–5939

    PubMed  CAS  Google Scholar 

  • van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG (2004) Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 64:4357–4365

    PubMed  Google Scholar 

  • van der Aar AMG, Sylva-Steenland RMR, Bos JD, Kapsenberg ML, de Jong EC, Teunissen MBM (2007) Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. J Immunol 178:1986–1990

    PubMed  Google Scholar 

  • Vermi W, Bonecchi R, Facchetti F, Bianchi D, Sozzani S, Festa S, Berenzi A, Cella M, Colonna M (2003) Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. J Pathol 200:255–268

    PubMed  Google Scholar 

  • Villadangos JA, Young L (2008) Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29:352–361

    PubMed  CAS  Google Scholar 

  • Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, Sullivan P, Mahany JJ, Gallagher M, Kramer A, Green SJ, O’Dwyer PJ, Running KL, Huhn RD, Antonia SJ (2007) Clinical activity and immune modulation in cancer patients treated with CP-870, 893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25:876–883

    PubMed  CAS  Google Scholar 

  • Vuylsteke RJ, van Leeuwen PA, Meijer S, Wijnands PG, Statius Muller MG, Busch DH, Scheper RJ, de Gruijl TD (2002) Sampling tumor-draining lymph nodes for phenotypic and functional analysis of dendritic cells and T cells. Am J Pathol 161:19–26

    PubMed  Google Scholar 

  • Vuylsteke RJCL, Molenkamp BG, Gietema HA, van Leeuwen PAM, Wijnands PGJT, Vos W, van Diest PJ, Scheper RJ, Meijer S, de Gruijl TD (2004) Local administration of granulocyte/macrophage colony-stimulating factor increases the number and activation state of dendritic cells in the sentinel lymph node of early-stage melanoma. Cancer Research 64:8456–8460

    PubMed  CAS  Google Scholar 

  • Vuylsteke RJCL, Molenkamp BG, van Leeuwen PAM, Meijer S, Wijnands PGJT, Haanen JBAG, Scheper RJ, de Gruijl TD (2006) Tumor-specific CD8+ T cell reactivity in the sentinel lymph node of GM-CSF-treated stage I melanoma patients is associated with high myeloid dendritic cell content. Clin Cancer Res 12:2826–2833

    PubMed  CAS  Google Scholar 

  • Waller EK (2007) The role of sargramostim (rhGM-CSF) as immunotherapy. Oncologist 12 (Suppl 2):22–26

    Google Scholar 

  • Wang W, Edington HD, Rao UN, Jukic DM, Land SR, Ferrone S, Kirkwood JM (2007) Modulation of signal transducers and activators of transcription 1 and 3 signaling in melanoma by high-dose IFNalpha2b. Clin Cancer Res 13:1523–1531

    PubMed  CAS  Google Scholar 

  • Wang W, Lau R, Yu D, Zhu W, Korman A, Weber J (2009) PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells. Int Immunol 21:1065–1077

    PubMed  CAS  Google Scholar 

  • Warren TL, Bhatia SK, Acosta AM, Dahle CE, Ratliff TL, Krieg AM, Weiner GJ (2000) APC stimulated by CpG oligodeoxynucleotide enhance activation of MHC class I-restricted T cells. J Immunol 165:6244–6251

    PubMed  CAS  Google Scholar 

  • Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    PubMed  CAS  Google Scholar 

  • Wei H, Wang S, Zhang D, Hou S, Qian W, Li B, Guo H, Kou G, He J, Wang H, Guo Y (2009) Targeted delivery of tumor antigens to activated dendritic cells via CD11c molecules induces potent antitumor immunity in mice. Clin Cancer Res 15:4612–4621

    PubMed  CAS  Google Scholar 

  • Wenzel J, Tormo D, Tuting T (2008) Toll-like receptor-agonists in the treatment of skin cancer: history, current developments and future prospects. Handb Exp Pharmacol 183:201–220

    PubMed  CAS  Google Scholar 

  • Wolf IH, Cerroni L, Kodama K, Kerl H (2005) Treatment of lentigo maligna (melanoma in situ) with the immune response modifier imiquimod. Arch Dermatol 141:510–514

    PubMed  CAS  Google Scholar 

  • Wolf IH, Kodama K, Cerroni L, Kerl H (2007) Nature of inflammatory infiltrate in superficial cutaneous malignancies during topical imiquimod treatment. Am J Dermatopathol 29:237–241

    PubMed  Google Scholar 

  • Yoneyama H, Matsuno K, Zhang Y, Nishiwaki T, Kitabatake M, Ueha S, Narumi S, Morikawa S, Ezaki T, Lu B, Gerard C, Ishikawa S, Matsushima K (2004) Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int Immunol 16:915–928

    PubMed  CAS  Google Scholar 

  • Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    PubMed  CAS  Google Scholar 

  • Zaba LC, Fuentes-Duculan J, Steinman RM, Krueger JG, Lowes MA (2007) Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J Clin Invest 117:2517–2525

    PubMed  CAS  Google Scholar 

  • Zaba LC, Krueger JG, Lowes MA (2009) Resident and “inflammatory” dendritic cells in human skin. J Invest Dermatol 129:302–308

    PubMed  CAS  Google Scholar 

  • Zang X, Allison JP (2007) The B7 family and cancer therapy: costimulation and coinhibition. Clin Cancer Res 13:5271–5279

    PubMed  CAS  Google Scholar 

  • Zou W, Machelon V, Coulomb-L’Hermin A, Borvak J, Nome F, Isaeva T, Wei S, Krzysiek R, Durand-Gasselin I, Gordon A, Pustilnik T, Curiel DT, Galanaud P, Capron F, Emilie D, Curiel TJ (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7:1339–1346

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. de Gruijl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oosterhoff, D., Sluijter, B.J.R., Hangalapura, B.N., de Gruijl, T.D. (2011). The Dermis as a Portal for Dendritic Cell-Targeted Immunotherapy of Cutaneous Melanoma. In: Teunissen, M. (eds) Intradermal Immunization. Current Topics in Microbiology and Immunology, vol 351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_136

Download citation

Publish with us

Policies and ethics