Skip to main content

Animal Models Commonly Used to Study Quorum-Sensing Inhibitors

  • Chapter
  • First Online:
Control of Biofilm Infections by Signal Manipulation

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 2))

  • 842 Accesses

Abstract

Multiple animal models exist for the study of biofilm infections and their inhibitors in vivo. The infection models described in this chapter range from the simple nematode-killing and amoeba-plate-killing assays, to models with more relevance to human disease like the pulmonary and cellulitis infection models in mice, the graft prosthesis, and the central venous catheter infection models in rats, and the endocarditis and osteomyelitis infection models in rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atela I, Coll P, Rello J, Quintana E, Barrio J, March F, Sanchez F, Barraquer P, Ballus J, Cotura A, Prats G (1997) Serial surveillance cultures of skin and catheter hub specimens from critically ill patients with central venous catheters: molecular epidemiology of infection and implications for clinical management and research. J Clin Microbiol 35:1784–1790

    PubMed  CAS  Google Scholar 

  2. Baddour LM, Wilson WR, Bayer AS (2005) Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications – executive summary. Circulation 111:3167–3184

    Article  Google Scholar 

  3. Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, Missiakas DM (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci USA 101:12312–12317

    Article  PubMed  CAS  Google Scholar 

  4. Balaban N, Goldkorn T, Nhan RT, Dang LB, Scott S, Ridgley RM, Rasooly A, Wright SC, Larrick JW, Rasooly R, Carlson JR (1998) Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science 280:438–440

    Article  PubMed  CAS  Google Scholar 

  5. Balaban N, Collins LV, Cullor JS, Hume EB, Medina-Acosta E, Vieira-da-Motta O, O'Callaghan R, Rossitto PV, Shirtliff ME, Serafim da Silveira L, Tarkowski A, Torres JV (2000) Prevention of diseases caused by Staphylococcus aureus using the peptide RIP. Peptides 21:1301–1311

    Article  PubMed  CAS  Google Scholar 

  6. Balaban N, Stoodley P, Fux CA, Wilson S, Costerton JW, Dell'Acqua G (2005) Prevention of staphylococcal biofilm-associated infections by the quorum sensing inhibitor RIP. Clin Orthop Relat Res 437:48–54

    Article  PubMed  Google Scholar 

  7. Balaban N, Cirioni O, Giacometti A, Ghiselli R, Braunstein J, Silvestri C, Mocchegiani F, Saba V, Scalise G (2007) Treatment of Staphylococcus aureus biofilm infection by the quorum sensing inhibitor RIP. Antimicrob Agents Chemother 51:2226–2229

    Article  PubMed  CAS  Google Scholar 

  8. Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JA, Hougen HP, Calum H, Madsen KG, Moser C, Molin S, Hoiby N, Givskov M (2005a) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383

    Article  PubMed  CAS  Google Scholar 

  9. Brady RA, Leid JG, Camper AK, Costerton JW, Shirtliff ME (2006) Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun 74:3415–3426

    Article  PubMed  CAS  Google Scholar 

  10. Cirioni O, Giacometti A, Ghiselli R, Dell'acqua G, Orlando F, Mocchegiani F, Silvestri C, Licci A, Saba V, Scalise G, Balaban N (2006) RNAIII-inhibiting peptide significantly reduces bacterial load and enhances the effect of antibiotics in the treatment of central venous catheter-associated Staphylococcus aureus infections. J Infect Dis 193:180–186

    Article  PubMed  CAS  Google Scholar 

  11. Cosson P, Zulianello L, Join-Lambert O, Faurisson F, Gebbie L, Benghezal M, Van Delden C, Curty LK, Kohler T (2002) Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol 184:3027–3033

    Article  PubMed  CAS  Google Scholar 

  12. Costerton JW (2005) Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res 437:7–11

    Article  PubMed  Google Scholar 

  13. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  14. Darby C, Cosma CL, Thomas JH, Manoil C (1999) Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:15202–15207

    Article  PubMed  CAS  Google Scholar 

  15. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    PubMed  Google Scholar 

  16. Ehrlich GD, Hu FE, Lin Q, Costerton JW, Post JC (2004) Intelligent implants to battle biofilms. ASM News 70:127–133

    Google Scholar 

  17. Garrison PK, Freedman LR (1970) Experimental endocarditis 1. Staphylococcal endocarditis in rabbits resulting from placement of a polyethylene catheter in the right side of the heart. Yale J Biol Med 42:394–410

    PubMed  CAS  Google Scholar 

  18. Gov Y, Borovok I, Korem M, Singh VK, Jayaswal RK, Wilkinson BJ, Rich SM, Balaban N (2004) Quorum sensing in Staphylococci is regulated via phosphorylation of three conserved histidine residues. J Biol Chem 279:14665–14672

    Article  PubMed  CAS  Google Scholar 

  19. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  PubMed  CAS  Google Scholar 

  20. Mader JT (1985) Animal models of osteomyelitis. Am J Med 78:213–217

    Article  PubMed  CAS  Google Scholar 

  21. Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa–Caenorhabditis elegans pathogenesis model. Cell 96:47–56

    Article  PubMed  CAS  Google Scholar 

  22. Oramas-Shirey MP, Buchanan LV, Dileto-Fang CL, Dailey CF, Ford CW, Batts DH, Gibson JK (2001) Efficacy of linezolid in a staphylococcal endocarditis rabbit model. J Antimicrob Chemother 47:349–352

    Article  PubMed  CAS  Google Scholar 

  23. Pedersen SS, Shand GH, Hansen BL, Hansen GN (1990) Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMI 98:203–211

    Article  CAS  Google Scholar 

  24. Pesanti EL, Lorenzo JA (1998) Osteoclasts and effects of interleukin 4 in development of chronic osteomyelitis. Clin Orthop Relat Res 355:290–299

    Article  PubMed  Google Scholar 

  25. Pukatzki S, Kessin RH, Mekalanos JJ (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci USA 99:3159–3164

    Article  PubMed  CAS  Google Scholar 

  26. Raad I (1998) Intravascular-catheter-related infection. Lancet 351:893–898

    Article  PubMed  CAS  Google Scholar 

  27. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, Nielsen J, Eberl L, Givskov M (2005a) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814

    Article  PubMed  CAS  Google Scholar 

  28. Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862

    PubMed  CAS  Google Scholar 

  29. Sifri CD, Begun J, Ausubel FM, Calderwood SB (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71:2208–2217

    Article  PubMed  CAS  Google Scholar 

  30. Smith RS, Harris SG, Phipps R, Iglewski B (2002a) The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 184:1132–1139

    Article  PubMed  CAS  Google Scholar 

  31. Steinert M, Heuner K (2005) Dictyostelium as host model for pathogenesis. Cell Microbiol 7:307–314

    Article  PubMed  CAS  Google Scholar 

  32. Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96:715–720

    Article  PubMed  CAS  Google Scholar 

  33. Wu H, Song Z, Givskov M, Doring G, Worlitzsch D, Mathee K, Rygaard J, Hoiby N (2001) Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147:1105–1113

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Balaban .

Editor information

Naomi Balaban

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balaban, N., Givskov, M., Rasmussen, T., Giacometti, A., Cirioni, O. (2008). Animal Models Commonly Used to Study Quorum-Sensing Inhibitors. In: Balaban, N. (eds) Control of Biofilm Infections by Signal Manipulation. Springer Series on Biofilms, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7142_2007_011

Download citation

Publish with us

Policies and ethics