Skip to main content

Reactor Design for Advanced Oxidation Processes

  • Chapter
  • First Online:
Book cover Electro-Fenton Process

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 61))

Abstract

Electrochemical reactor design for oxidation processes follows similar engineering principles used for typical electrosynthesis reactors and include considerations of the components materials, electrode and cell geometries, mass transport conditions, rate of reactions, space–time yield calculations, selectivity, modeling, and energy efficiencies. It is common practice to optimize these characteristics at laboratory scale level followed by more practical considerations to build a larger reactor able to accomplish a required performance that can be easily assembled and requires low maintenance and monitoring. The scaling-up process should involve testing a variety of electrode configurations and cell designs to maximize the degradation of a particular pollutant. In this chapter, we describe the general principles of reactor design and list the most typical reactor configurations and performance followed by some recent advances in modeling and further developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wendt H, Kreysa G (2010) Electrochemical engineering; science and technology in chemical and other industries. Springer, Berlin

    Google Scholar 

  2. Pletcher D, Walsh FC (1990) Industrial electrochemistry, 2nd edn. Chapman and Hall, London

    Google Scholar 

  3. Bebelis S, Bouzek K, Cornell A, Kelsall GH, Ferreira MGS, Lapicque F, Ponce de León C, Rodrigo MA, Walsh FC (2013) Highlights during the development of electrochemical engineering. Chem Eng Res Des 91:1998–2020

    Article  CAS  Google Scholar 

  4. Quan X, Cheng Z, Chen B, Zhu X (2013) Electrochemical oxidation of recalcitrant organic compounds in biologically treated municipal solid waste leachate in a flow reactor. J Environ Sci 25:2023–2030

    Article  CAS  Google Scholar 

  5. Brillas E, Garrido JA, Rodríguez RM, Arias C, Cabot PL, Centellas F (2008) Wastewaters by electrochemical advanced oxidation processes using a BDD anode and electrogenerated H2O2 with Fe(II) and UVA light as catalysts. Port Electrochim Acta 26:15–46

    Article  CAS  Google Scholar 

  6. Vasconcelos VM, Ponce-de-León C, Nava JL, Lanza MRV (2016) Electrochemical degradation of RB-5 dye by anodic oxidation, electro-Fenton and by combining anodic oxidation-electro-Fenton in a filter-press flow cell. J Electroanal Chem 765:179–187

    Article  CAS  Google Scholar 

  7. Bedolla-Guzman A, Feria-Reyes R, Gutierrez-Granados S, Peralta-Hernández JM (2017) Decolorization and degradation of reactive yellow HF aqueous solutions by electrochemical advanced oxidation processes. Environ Sci Pollut Res 24:12506–12514

    Article  CAS  Google Scholar 

  8. Ting WP, Lu MC, Huang YH (2008) The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA). J Hazard Mater 156:421–427

    Article  CAS  Google Scholar 

  9. Koparal AS, Yavuz Y, Gürel C, Öğütveren UB (2007) Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode. J Hazard Mater 145:100–108

    Article  CAS  Google Scholar 

  10. Yavuz Y, Shahbazi R (2012) Anodic oxidation of reactive black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor. Separ Purif Tech 85:130–136

    Article  CAS  Google Scholar 

  11. Anotai J, Su CC, Tsai YC, Lu MC (2010) Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes. J Hazard Mater 183:888–893

    Article  CAS  Google Scholar 

  12. Hussain SN, Roberts EPL, Asghar HMA, Campen AK, Brown NW (2013) Oxidation of phenol and the adsorption of breakdown products using a graphite adsorbent with electrochemical regeneration. Electrochim Acta 92:20–30

    Article  CAS  Google Scholar 

  13. Cusick RD, Ullery ML, Dempsey BA, Logan BE (2014) Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Res 54:297–306

    Article  CAS  Google Scholar 

  14. Valenzuela AL, Vázquez-Medrano R, Ibáñez JB, Frontana-Uribe BA, Prato-Garcia D (2017) Remediation of diquat-contaminated water by electrochemical advanced oxidation processes using boron-doped diamond (BDD) anodes. Water Air Soil Pollut 228:67

    Article  Google Scholar 

  15. Bergmann MEH, Rollin J, Iourtchouk T (2009) The occurrence of perchlorate during drinking water electrolysis using BDD anodes. Electrochim Acta 54:2102–2107

    Article  CAS  Google Scholar 

  16. Recio FJ, Herrasti P, Vazquez L, Ponce de León C, Walsh FC (2013) Mass transfer to a nanostructured nickel electrodeposit of high surface area in a rectangular flow channel. Electrochim Acta 90:507–513

    Article  CAS  Google Scholar 

  17. Nava-M de Oca JL, Sosa E, Ponce de León C, Oropeza MT (2001) Effectiveness factors in an electrochemical reactor with rotating cylinder electrode for the acid-cupric/copper cathode interface process. Chem Eng Sci 56:2695–2702

    Article  Google Scholar 

  18. Fleischmann M, Ibrisagić Z (1980) Electrical measurement in bipolar trickle reactors. J Appl Electrochem 10:151–156

    Article  CAS  Google Scholar 

  19. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862

    Article  CAS  Google Scholar 

  20. Pletcher D, Walsh FC (1992) Three-dimensional electrodes. In: Genders JD, Weinberg NL (eds) Electrochemical technology for a cleaner environment. The Electrosynthesis Company Inc, Lancaster, NY

    Google Scholar 

  21. Harrington T, Pletcher D (1999) The removal of low levels of organics from aqueous solutions using Fe(II) and hydrogen peroxide formed in situ at gas diffusion electrodes. J Electrochem Soc 146:2983–2989

    Article  CAS  Google Scholar 

  22. Recio FJ, Herrasti P, Sirés I, Kulak AN, Bavykin DV, Ponce de León C, Walsh FC (2011) The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochim Acta 56:5158–5165

    Article  CAS  Google Scholar 

  23. He Y, Lin H, Wang X, Huang W, Chen R, Li H (2016) A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation. Chem Commun 52:8026–8029

    Article  CAS  Google Scholar 

  24. Bard AJ, Faulkner LR (2001) Electrochemical methods; fundamentals and applications, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  25. Walsh FC (1993) A first course in electrochemical engineering. The Electrochemical Consultancy, Romsey

    Google Scholar 

  26. Trinidad P, Walsh FC (1996) Hydrodynamic behaviour of the FM01-LC reactor. Electrochim Acta 41:493–502

    Article  CAS  Google Scholar 

  27. Sandoval MA, Fuentes R, Walsh FC, Nava JL, Ponce de León C (2016) Computational fluid dynamics simulations of single-phase flow having a stack of three cells. Electrochim Acta 216:490–498

    Article  CAS  Google Scholar 

  28. Bengoa C, Montillet A, Legentilhomme P, Legrand J (2000) Characterization and modeling of the hydrodynamic behaviour in the filter-press-type FM01-LC electrochemical cell by direct flow visualization and residence time distribution. Ind Eng Chem Res 29:2199–2206

    Article  Google Scholar 

  29. Rivera FF, Ponce de León C, Walsh FC, Nava JL (2015) The reaction environment in a filter-press laboratory reactor: the FM01-LC cell. Electrochim Acta 161:436–452

    Article  CAS  Google Scholar 

  30. Coria G, Pérez T, Sirés I, Nava JL (2015) Mass transport studies during dissolved oxygen reduction to hydrogen peroxide in a filter-press electrolyzer using graphite felt, reticulated vitreous carbon and boron-doped diamond as cathodes. J Electroanal Chem 257:225–229

    Article  Google Scholar 

  31. Gherardini L, Michaud PA, Panizza M, Comninellis C, Vatistas N (2001) Electrochemical oxidation of 4-chlorophenol for wastewater treatment. J Electrochem Soc 148:D78–D82

    Article  CAS  Google Scholar 

  32. Brown CJ, Pletcher D, Walsh FC, Hammond JK, Robinson D (1992) Local mass transport effects in the FM01 laboratory electrolyser. J Appl Electrochem 22:613–619

    Article  CAS  Google Scholar 

  33. Griffiths M, Ponce de León C, Walsh FC (2005) Mass transport in the rectangular channel of a filter-press electrolyzer (the FM01-LC reactor). Am Int Chem Eng J 51:682–687

    Article  CAS  Google Scholar 

  34. Santos JLC, Geraldes V, Velizarov S, Crespo JG (2010) Characterization of fluid dynamics and mass-transfer in an electrochemical oxidation cell by experimental and CFD studies. Chem Eng J 157:379–392

    Article  CAS  Google Scholar 

  35. Montillet A, Comiti J, Legrand J (1994) Application of metallic foams in electrochemical reactors of filter-press type. Part II: mass transfer performance. J Appl Electrochem 24:384–389

    Article  CAS  Google Scholar 

  36. Eisenberg M, Tobias CW, Wilke CR (1954) Ionic mass transfer and concentration polarization at rotating electrode. J Electrochem Soc 101:306–320

    Article  CAS  Google Scholar 

  37. Castañeda LF (2016) Evaluation of the performance of the FM01-LC reactor in the regeneration of H2SO4 from depleted baths by the electrodialysis process: theoretical and practical study. Dissertation, Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C.

    Google Scholar 

  38. Pérez T, Ponce de León C, Walsh FC, Nava JL (2015) Simulation of current distribution along a planar electrode under turbulent flow conditions in a laboratory filter-press flow cell. Electrochim Acta 154:352–360

    Article  Google Scholar 

  39. Pérez T, León MI, Nava JL (2013) Numerical simulation of current distribution along the boron-doped diamond anode of a filter-press-type FM01-LC reactor during the oxidation of water. J Electroanal Chem 707:1–6

    Article  Google Scholar 

  40. Butrón E, Juárez ME, Solis M, Teutli M, González I, Nava JL (2007) Electrochemical incineration of indigo textile dye in filter-press-type FM01-LC electrochemical cell using BDD electrodes. Electrochim Acta 52:6888–6894

    Article  Google Scholar 

  41. Coria G, Nava JL, Carreño G (2014) Electrooxidation of diclofenac in synthetic pharmaceutical wastewater using an electrochemical reactor equipped with a boron doped diamond electrode. J Mex Chem Soc 58:303–308

    CAS  Google Scholar 

  42. Nava JL, Núñez F, González I (2007) Electrochemical incineration of o-cresol and p-cresol in the filter-press-type FM01-LC electrochemical cell using BDD electrodes in sulphate media at pH 0. Electrochim Acta 52:3229–3235

    Article  CAS  Google Scholar 

  43. Pérez T, Sirés I, Brillas E, Nava JL (2017) Solar fotoelectron-Fenton flow plant modelling for the degradation of the antibiotic erythromycin in sulphate medium. Electrochim Acta 228:45–56

    Article  Google Scholar 

  44. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal Environ 166–167:603–643

    Article  Google Scholar 

  45. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407

    Article  Google Scholar 

  46. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367

    Article  Google Scholar 

  47. Goodridge F, Scott K (1995) Electrochemical process engineering: a guide to the design of electrochemical plant. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Nava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Nava, J.L., Ponce de León, C. (2017). Reactor Design for Advanced Oxidation Processes. In: Zhou, M., Oturan, M., Sirés, I. (eds) Electro-Fenton Process. The Handbook of Environmental Chemistry, vol 61. Springer, Singapore. https://doi.org/10.1007/698_2017_54

Download citation

Publish with us

Policies and ethics