Skip to main content

The Avocado and Its Waste: An Approach of Fuel Potential/Application

  • Chapter
  • First Online:
Environment, Energy and Climate Change II

Abstract

With a global production exceeding 4 million tons per year in 2011, avocado has become a major agroindustrial commodity. Most of the production and the transformation industry is located in North and Central America, although consumption is growing fast primarily in developed countries like the USA and the European Union. The principal use of the avocado fruit is human consumption, although other applications related to the production of cosmetics, nutritional supplements and livestock feed have been reported.

Only the avocado pulp is employed for commercial applications, while other fruit elements like the seed and peel have no practical use and are disposed of by landfilling. Avocado seeds, which represent up to 26 wt % of the fruit mass, are produced in large amounts in centralized avocado transformation plants. Despite their high starch content, the seeds cannot be used for livestock feeding due to the high concentration of polyphenols, which impart a bitter taste and may be toxic at high levels. This chapter presents an introduction into the characteristics of avocado seeds and its potential use as a fuel using different technologies. Information is provided about the chemical, physical and thermal properties of the material. Preliminary results are also included describing its thermochemical transformation using a rotary kiln and a porous media reactor. Product yields and compositions are described for the gasification and pyrolysis of this material using different operating conditions. The chapter also shows preliminary analysis regarding mechanical densification for the production of pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seymour GB, Tucker GA (1993) Avocado. In: Seymour C, Taylor J, Tucker C (eds) Biochemistry of fruit ripening. Chapman & Hall, London. ISBN 0412 40830 9

    Chapter  Google Scholar 

  2. Cowan AK, Wolstenholme BN (2003) Avocados. In: Caballero B, Finglas P, Trugo L (eds) Encyclopedia of food sciences and nutrition, 2nd edn. Elsevier Science Ltd

    Google Scholar 

  3. Arriola MC, Menchú JF (1979) The avocado. In: Inglett GE, Charalambous G (eds) Tropical foods: chemistry and nutrition, vol 2. Academic, New York

    Google Scholar 

  4. Donetti M (2011) Postharvest biochemical and physiological characterization of imported avocado fruit. Doctoral thesis, Cranfield University

    Google Scholar 

  5. Bernal JA, Díaz CA (2008) Generalidades del cultivo. In: Bernal JA, Díaz CA (eds) Tecnología para el cultivo del aguacate. Corporación Colombiana de Investigación Agropecuaria (Colombia). ISBN: 978-958-8311-74-6

    Google Scholar 

  6. Biale JB, Young RE (1971) The avocado pear. In: Hulme AC (ed) The biochemistry of fruits and their products. Academic, New York. ISBN 12-361202-0

    Google Scholar 

  7. USDA (United States Department of Agriculture) (2011) Avocado, almond, pistachio and walnut composition. Nutrient Data Laboratory. USDA national nutrient database for standard reference, Release 24. USDA, Washington

    Google Scholar 

  8. Tamayo A (2008) Nutrición y Fertilización. In: Bernal JA, Díaz CA (eds) Tecnología para el cultivo del aguacate. Corporación Colombiana de Investigación Agropecuaria (Colombia). ISBN: 978-958-8311-74-6

    Google Scholar 

  9. Córdoba OJ (2008) Arvenses. In: Bernal JA, Díaz CA (eds) Tecnología para el cultivo del aguacate. Corporación Colombiana de Investigación Agropecuaria (Colombia). ISBN: 978-958-8311-74-6

    Google Scholar 

  10. Londoño ME (2008) Insectos. In: Bernal JA, Díaz CA (eds) Tecnología para el cultivo del aguacate. Corporación Colombiana de Investigación Agropecuaria (Colombia). ISBN: 978-958-8311-74-6

    Google Scholar 

  11. Tamayo PJ (2008) Enfermedades y desórdenes abióticos. In: Bernal JA, Díaz CA (eds) Tecnología para el cultivo del aguacate. Corporación Colombiana de Investigación Agropecuaria (Colombia). ISBN: 978-958-8311-74-6

    Google Scholar 

  12. Sadir R (1972) Olio di avocado: tecnología dell’ estrazione e industrializacione di revani. Rivista Italiana Delle Sostanze Grasse 49:90–93 [Cited by Bressani R, Rodas B, Ruiz AS (2006) La composición química, capacidad antioxidativa, y valor nutritivo de la semilla de variedades de aguacate. Final Report of the Project FODECYT 02-2006, Universidad del Valle (Guatemala)]

    Google Scholar 

  13. Bressani R, Rodas B, Ruiz AS (2006) La composición química, capacidad antioxidativa, y valor nutritivo de la semilla de variedades de aguacate. Final Report of the Project FODECYT 02-2006 (National Science and Technology Fund), Universidad del Valle (Guatemala)

    Google Scholar 

  14. Ozdemir F, Topuz A (2003) Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem 86:79–83

    Article  Google Scholar 

  15. Meyer MD, Terry LA (2010) Fatty acid and sugar composition of avocado, cv. Hass, in response to treatment with an ethylene scavenger or 1-methylcyclopropene to extend storage life. Food Chem 121:1203–1210

    Article  CAS  Google Scholar 

  16. Weatherby LS, Sorber DG (1931) Chemical composition of avocado seed. Ind Eng Chem 23(12):1421–1423

    Article  CAS  Google Scholar 

  17. Bora PS, Narain N, Rocha RVM, Paulo MQ (2001) Characterization of the oils from the pulp and seeds of avocado (cultivar: Fuerte) fruits. Grasas y Aceites 52(3–4):171–174

    CAS  Google Scholar 

  18. Soong Y-Y, Barlow PJ (2004) Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88:411–417

    Article  CAS  Google Scholar 

  19. Jamieson G, Raymond W, Hann M (1928) Avocado oil: the composition and constants of a little-known pericarp oil. Oil Fat Ind 5:202–207

    Article  CAS  Google Scholar 

  20. Werman MJ, Neeman I (1987) Avocado oil production and chemical characteristics. J Am Oil Chem Soc 64(2):229–232

    Article  CAS  Google Scholar 

  21. Swisher HE (1988) Avocado oil from food use to skin care. J Am Oil Chem Soc 65(11):1702–1712

    Article  Google Scholar 

  22. Cabrera G, Burbano JC, García JI (2011) Preliminary analysis of biomass potentially useful for producing biodiesel. Dyna 170:144–151. ISSN 0012-7353

    Google Scholar 

  23. Giraldo L, Moreno-Piraján JC (2012) Lipase supported on mesoporous materials as a catalyst in the synthesis of biodiesel from Persea americana Mill. oil. J Mol Catal B Enzym 77:32–38

    Article  CAS  Google Scholar 

  24. Knothe G (2013) Avocado and olive oil methyl esters. Biomass Bioenergy 58:143–148

    Article  CAS  Google Scholar 

  25. Rachimoellah HM, Resti DA, Zibbeni A, Susila DIW (2009) Production of biodiesel through transesterification of avocado (Persea gratissima) seed oil using base catalyst. Jurnal Teknik Mesin 11(2):85–90

    Google Scholar 

  26. Elizalde-González MP, Mattusch J et al (2007) Characterization of adsorbent materials prepared from avocado kernel seeds: natural, activated and carbonized forms. J Anal Appl Pyrolysis 78:185–193

    Article  Google Scholar 

  27. Alvares L, Caetano M et al (2011) Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem Eng J 174:49–57

    Article  Google Scholar 

  28. AEN/CTN 164 (2010) EN 14774-1:2010 Solid biofuels – determination of moisture content – oven dry method – part 1: total moisture – reference method

    Google Scholar 

  29. AEN/CTN 164 (2010) EN 15148:2009 Solid biofuels. Determination of the content of volatile matter

    Google Scholar 

  30. AEN/CTN 164 (2010) EN 14775:2009 Solid biofuels. Determination of ash content

    Google Scholar 

  31. Howell JR, Hall MJ, Ellzey JL (1996) Combustion of Hydrocarbon Fuels within Porous Inert Media. Prog Energy Combust Sci 22:121–145

    Article  CAS  Google Scholar 

  32. Mujeebu MA, Abdullah MZ et al (2009) Applications of porous media combustion technology – a review. Appl Energy 86:1365–1375

    Article  CAS  Google Scholar 

  33. Toledo M, Vergara E, Saveliev A (2011) Syngas production in hybrid filtration combustion. Int J Hydrogen Energy 36:3907–3912. doi:10.1016/j.ijhydene.2010.11.060

    Article  CAS  Google Scholar 

  34. Toledo M, Utria K, Gonzalez F et al (2012) Hybrid filtration combustion of natural gas and coal. Int J Hydrogen Energy 37:6942–6948. doi:10.1016/j.ijhydene.2012.01.061

    Article  CAS  Google Scholar 

  35. Gentillon P, Toledo M (2013) Hydrogen and syngas production from propane and polyethylene. Int J Hydrogen Energy 38:9223–9228. http://dx.doi.org/10.1016/j.ijhydene.2013.05.058

  36. United Nations (1998) Kyoto protocol to the United Nations framework convention on climate change

    Google Scholar 

  37. Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 31(2):171–192

    Article  CAS  Google Scholar 

  38. Wu Y, Zhao Z, Li H, He F (2009) Low temperature pyrolysis characteristics of major components of biomass. J Fuel Chem Technol 37(4):427–432

    Article  CAS  Google Scholar 

  39. Părpăriţa E, Brebu M, Azhar Uddin M, Yanik J, Vasile C (2014) Pyrolysis behaviors of various biomasses. Polym Degrad Stab 100:1–9

    Article  Google Scholar 

  40. Megaritis A, Yap D, Wyszynski ML (2007) Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping. Energy 32(12):2396–2400

    Article  CAS  Google Scholar 

  41. Hamelinck CN, Suurs RAA, Faaij APC (2005) International bioenergy transport costs and energy balance. Biomass Bioenergy 29(2):114–134

    Article  Google Scholar 

  42. Hamelinck CN, Faaij APC (2006) Production of advanced biofuels. Int Sugar J 108(1287):168–175

    CAS  Google Scholar 

  43. Chen WH, Kuo PC (2011) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36(2):803–811

    Article  CAS  Google Scholar 

  44. Chen WH, Kuo PC (2010) A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35(6):2580–2586

    Article  CAS  Google Scholar 

  45. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) More efficient biomass gasification via torrefaction. Energy 31(15):3458–3470

    Article  CAS  Google Scholar 

  46. Couhert C, Salvador S, Commandre JM (2009) Impact of torrefaction on syngas production from wood. Fuel 88(11):2286–2290

    Article  CAS  Google Scholar 

  47. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood – part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77(1):28–34

    Article  CAS  Google Scholar 

  48. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood – part 2. Analysis of products. J Anal Appl Pyrolysis 77(1):35–40

    Article  CAS  Google Scholar 

  49. Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6):844–856

    Article  CAS  Google Scholar 

  50. Repellin V, Govin A, Rolland M, Guyonnet R (2010) Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln. Biomass Bioenergy 34(5):602–609

    Article  CAS  Google Scholar 

  51. Kaminsky W (1985) Thermal recycling of polymers. J Anal Appl Pyrolysis 8:439–448

    Article  CAS  Google Scholar 

  52. Scott DS, Majerski P, Piskorz J, Radlein D (1999) A second look at fast pyrolysis of biomass – the RTI process. J Anal Appl Pyrolysis 51(1–2):23–37

    Article  CAS  Google Scholar 

  53. Senneca O (2007) Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol 88(1):87–97

    Article  CAS  Google Scholar 

  54. Uslu A, Faaij APC, Bergman PCA (2008) Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33(8):1206–1223

    Article  Google Scholar 

  55. Blanco MC, Blanco CG, Martınez A, Tascón JMD (2002) Composition of gases released during olive stones pyrolysis. J Anal Appl Pyrolysis 65(2):313–322

    Article  Google Scholar 

  56. Jauhiainen J, Conesa JA, Font R, Martın-Gullón I (2004) Kinetics of the pyrolysis and combustion of olive oil solid waste. J Anal Appl Pyrolysis 72(1):9–15

    Article  CAS  Google Scholar 

  57. Pattara C, Cappelletti GM, Cichelli A (2010) Recovery and use of olive stones: commodity, environmental and economic assessment. Renew Sustain Energy Rev 14(5):1484–1489

    Article  CAS  Google Scholar 

  58. Rodríguez G, Lama A, Rodríguez R, Jiménez A, Guillén R, Fernández-Bolaños J (2008) Olive stone an attractive source of bioactive and valuable compounds. Bioresour Technol 99(13):5261–5269

    Article  Google Scholar 

  59. Zabaniotou AA, Kalogiannis G, Kappas E, Karabelas AJ (2000) Olive residues (cuttings and kernels) rapid pyrolysis product yields and kinetics. Biomass Bioenergy 18(5):411–420

    Article  CAS  Google Scholar 

  60. Asociación Española de Normalización y Acreditación (AENOR) (2011) Biocombustibles Sólidos. Especificaciones y clases de combustibles. Parte 1: Requisitos generales (UNE-EN_14961-1 = 2011). In: AENOR (ed)

    Google Scholar 

  61. Kaliyan N, Morey RV (2009) Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33:337–59

    Article  CAS  Google Scholar 

  62. Asociación Española de Normalización y Acreditación (AENOR) (2010) Determinación de la durabilidad mecánica de pélets y briquetas. Parte 1: Pélets (UNE-EN 15210-1). In: AENOR (ed)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the European Commission for financial support under Marie Curie Actions (Grant Agreement no 318927) and to Universidad Politécnica de Madrid for financial support under Project AL13-PID-16 for Research Activities with Latin America. We are also grateful to restaurant Punto MX (Madrid, Spain) and to Frumaco SL (Málaga, Spain) for provision of avocado seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Paz Domínguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Domínguez, M.P., Araus, K., Bonert, P., Sánchez, F., San Miguel, G., Toledo, M. (2014). The Avocado and Its Waste: An Approach of Fuel Potential/Application. In: Lefebvre, G., Jiménez, E., Cabañas, B. (eds) Environment, Energy and Climate Change II. The Handbook of Environmental Chemistry, vol 34. Springer, Cham. https://doi.org/10.1007/698_2014_291

Download citation

Publish with us

Policies and ethics