Skip to main content

Cognitive Predictors of Cortical Thickness in Healthy Aging

  • Chapter
  • First Online:
Clinical Medicine Research

Abstract

This study seeks to define the role of predictive values of the motor speed, inhibition control, and fluid and crystallized intelligence in estimating the cortical thickness in healthy elderly. Forty-six older healthy subjects (37 women, 9 men) over 60 years of age were included in the study. The participants were examined on 3.0 T MRI scanners. The protocol included standard anatomical sequences, to exclude brain pathology, and a high-resolution T1-weighted sequence used to estimate the cortical thickness. The neuropsychological protocol included fluid intelligence assessment (Raven Progressive Matrices), crystalized intelligence assessment (information or vocabulary subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R)), and executive functioning (Color Traits Test). The findings unraveled several interdependencies. The higher the intelligence, the thicker was the grey matter in nine regions of both hemispheres, but also some paradoxical reversed associations were found in four areas; all of them were localized along different sections of the cingulate gyrus in both hemispheres. An inverse association was found between crystallized intelligence and the thickness of the pars opecularis of the right hemisphere. The better the executive functioning, the thicker was the grey matter of a given region. The better the motor performance, the thicker was the grey matter of the rostral middle frontal area of the left hemisphere and the lingual gyrus of both hemispheres. In conclusion, the associations unraveled demonstrate that the neural mechanisms underlying healthy aging are complex and heterogenic across different cognitive domains and neuroanatomical regions. No brain aging theory seems to provide a suitable interpretative framework for all the results. A novel, more integrative approach to the brain aging should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balota DA, Dolan PO, Duchek JM (2000) Memory changes in healthy young and older adults. In: Tulving E, Craik FIM (eds) Oxford handbook of memory. Oxford University Press, Oxford, pp 395–410

    Google Scholar 

  • Braak H, Braak E (1991) Neuropathological staging of alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  Google Scholar 

  • Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17(1):85–100

    Article  Google Scholar 

  • Cattell RB (1963) Theory of fluid and crystallized intelligence: a critical experiment. J Educ Psychol 54(1):1–22

    Article  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9(2):179–194

    Article  CAS  Google Scholar 

  • Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3):968–980

    Article  Google Scholar 

  • Dolcos F, Rice HJ, Cabeza R (2002) Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neurosci Biobehav Rev 26(7):819–825

    Article  Google Scholar 

  • Enzinger C, Fazekas F, Matthews PM, Ropele S, Schmidt H, Smith S, Schmidt R (2005) Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 64(10):1704–1711

    Article  CAS  Google Scholar 

  • Finkel D, Reynolds CA, McArdle JJ, Pedersen NL (2007) Age changes in processing speed as a leading indicator of cognitive aging. Psychol Aging 22(3):558–568

    Article  Google Scholar 

  • Fischl B, Sereno MI, Tootell RBH, Dale AM (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284

    Article  CAS  Google Scholar 

  • Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355

    Article  CAS  Google Scholar 

  • Fischl B, Salat DH, van der Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM (2004a) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23:S69–S84

    Article  Google Scholar 

  • Fischl B, Van Der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004b) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22

    Article  Google Scholar 

  • Fjell AM, Walhovd KB, Reinvang I, Lundervold A, Salat D, Quinn BT, Fischl B, Dale AM (2006) Selective increase of cortical thickness in high-performing elderly – structural indices of optimal cognitive aging. NeuroImage 29(3):984–994

    Article  Google Scholar 

  • Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, Brewer JB, Dale AM (2009a) One-year brain atrophy evident in healthy aging. J Neurosci 29(48):15223–15231

    Article  CAS  Google Scholar 

  • Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Walhovd KB (2009b) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19(9):2001–2012

    Article  Google Scholar 

  • Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB (2013) Brain changes in older adults at very low risk for Alzheimer’s disease. J Neurosci 33(19):8237–8242

    Article  CAS  Google Scholar 

  • Fjell AM, Westlye LT, Grydeland H, Amlien I, Espeseth T, Reinvang I, Raz N, Dale AM, Walhovd KB, Initiative ADN (2014) Accelerating cortical thinning: unique to dementia or universal in aging? Cereb Cortex 24(4):919–934

    Article  Google Scholar 

  • Gautam P, Anstey KJ, Wen W, Sachdev PS, Cherbuin N (2015) Cortical gyrification and its relationships with cortical volume, cortical thickness, and cognitive performance in healthy mid-life adults. Behav Brain Res 287:331–339

    Article  Google Scholar 

  • Gray JR, Thompson M (2004) Neurobiology of intelligence: science and ethics. Nat Rev Neurosci 5(6):471–482

    Article  CAS  Google Scholar 

  • Grön G, Bittner D, Schmitz B, Wunderlich AP, Tomczak R, Riepe MW (2003) Variability in memory performance in aged healthy individuals: an fMRI study. Neurobiol Aging 24(3):453–462

    Article  Google Scholar 

  • Haartsen R, Jones EJH, Johnson MH (2016) Human brain development over the early years. Curr Opin Behav Sci 10:149–154

    Article  Google Scholar 

  • Hutton C, Draganski B, Ashburner J, Weiskopf N (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. NeuroImage 48(2):371–380

    Article  Google Scholar 

  • Josefsson M, de Luna X, Pudas S, Nilsson LG, Nyberg L (2012) Genetic and lifestyle predictors of 15-year longitudinal change in episodic memory. J Am Geriatr Soc 60(12):2308–2312

    Article  Google Scholar 

  • Joy S, Fein D, Kaplan E, Freedman M (2001) Quantifying qualitative features of block design performance among healthy older adults. Arch Clin Neuropsychol 16(2):157–170

    Article  CAS  Google Scholar 

  • Khundrakpam BS, Lewis JD, Zhao L, Chouinard-Decorte F, Evans AC (2016) Brain connectivity in normally developing children and adolescents. NeuroImage 134:192–203

    Article  Google Scholar 

  • Klein A, Tourville J (2012) 101 labeled brain images and a consistent human cortical labeling protocol. Front Neurosci 6:171

    Article  Google Scholar 

  • Lee S, Habeck C, Razlighi Q, Salthouse T, Stern Y (2016) Selective association between cortical thickness and reference abilities in normal aging. NeuroImage 142:293–300

    Article  Google Scholar 

  • Mattay VS, Fera F, Tessitore A, Hariri AR, Berman KF, Das S, Meyer-Lindenberg A, Goldberg TE, Callicott JH, Weinberger DR (2006) Neurophysiological correlates of age-related changes in working memory capacity. Neurosci Lett 392(1–2):32–37

    Article  CAS  Google Scholar 

  • Menary K, Collins PF, Porter JN, Muetzel R, Olson EA, Kumar V, Steinbach M, Lim KO, Luciana M (2013) Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence 41(5):597–606

    Article  Google Scholar 

  • Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Ann Rev Psychol 60(1):173–196

    Article  Google Scholar 

  • Persson N, Ghisletta P, Dahle CL, Bender AR, Yang Y, Yuan P, Daugherty AM, Raz N (2016) Regional brain shrinkage and change in cognitive performance over two years: the bidirectional influences of the brain and cognitive reserve factors. NeuroImage 126:15–26

    Article  Google Scholar 

  • Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neuroscie Biobehav Rev 30(6):730–748

    Article  Google Scholar 

  • Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15(11):1676–1689

    Article  Google Scholar 

  • Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010) Trajectories of brain aging in middle-aged and older adults: regional and individual differences. NeuroImage 51(2):501–511

    Article  Google Scholar 

  • Reber AS, Reber ES (2001) Dictionary of psychology. Penguin books, London

    Google Scholar 

  • Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23(8):3295–3301

    Article  CAS  Google Scholar 

  • Reuter-Lorenz PA, Park DC (2010) Human neuroscience and the aging mind: a new look at old problems. J Gerontol B Psychol Sci Soc Sci 65(4):405–415

    Article  Google Scholar 

  • Royall DR, Palmer R, Chiodo LK, Polk MJ (2005) Normal rates of cognitive change in successful aging: the freedom house study. J Int Neuropsychol Soc 11(7):899–909

    Article  Google Scholar 

  • Salthouse TA (2000) Aging and measures of processing speed. Biol Psychol 54(1–3):35–54

    Article  CAS  Google Scholar 

  • Swerdlow RH (2007) Is aging part of Alzheimer’s disease, or is Alzheimer’s disease part of aging? Neurobiol Aging 28(10):1465–1480

    Article  Google Scholar 

  • Taconnat L, Clarys D, Vanneste S, Bouazzaoui B, Isingrini M (2007) Aging and strategic retrieval in a cued-recall test: the role of executive functions and fluid intelligence. Brain Cogn 64(1):1–6

    Article  Google Scholar 

  • Tamnes CK, Walhovd KB, Dale AM, Østby Y, Grydeland H, Richardson G, Westlye LT, Roddey JC, Hagler DJ Jr, Due-Tønnessen P, Holland D, Fjell AM, Alzheimer’s Disease Neuroimaging Initiative (2013) Brain development and aging: overlapping and unique patterns of change. NeuroImage 68:63–74

    Article  Google Scholar 

  • Thambisetty M, Wan J, Carass A, An Y, Prince JL, Resnick SM (2010) Longitudinal changes in cortical thickness associated with normal aging. NeuroImage 52(4):1215–1223

    Article  Google Scholar 

  • Uekermann J, Channon S, Irene Daum I (2006) Humor processing, mentalizing, and executive function in normal aging. J Int Neuropsychol Soc 12(2):184–191

    Article  Google Scholar 

  • West RL (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120(2):272–292

    Article  CAS  Google Scholar 

  • Zhou D, Lebel C, Evans A, Beaulieu C (2013) Cortical thickness asymmetry from childhood to older adulthood. NeuroImage 83:66–74

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by the National Science Center grants: Preludium UMO-2013/09/HS6/N/02634 and Miniatura UMO-2017/01/X/NZ4/00779. The FreeSurfer’s calculations were carried out at the Academic Computer Center in Gdańsk.

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrycja Naumczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naumczyk, P. et al. (2018). Cognitive Predictors of Cortical Thickness in Healthy Aging. In: Pokorski, M. (eds) Clinical Medicine Research. Advances in Experimental Medicine and Biology(), vol 1116 . Springer, Cham. https://doi.org/10.1007/5584_2018_265

Download citation

Publish with us

Policies and ethics