Skip to main content

Using Bond Valences to Model the Structures of Ternary and Quaternary Oxides

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 158))

Abstract

The bond valence method is implemented in the modeling of crystal structures with the software program SPuDS. The approach is investigated for the perovskite, pyrochlore, spinel, and garnet structure types. Crystal structures of selected compositions were calculated and compared to experimental structures that were determined using X-ray or neutron diffraction. Bond valence sums (BVSs) of the ions and the global instability indices (G) are investigated to provide insight into the structures of these four structural classes of materials. The predictive ability is examined in the context of understanding the structures of existing compounds. The accuracy and possible uses of the crystal structures obtained from modeling using bond valences are explored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BVS:

Bond valence sum

SPuDS:

Structure Prediction Diagnostic Software

v.u.:

Valence units

References

  1. Lufaso MW, Woodward PM (2001) Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallogr B 57:725–738

    CAS  Google Scholar 

  2. Lufaso MW, Barnes PW, Woodward PM (2006) Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS. Acta Crystallogr B 62:397–410

    Google Scholar 

  3. Lufaso MW (2004) Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM2′O9 (M = Mg, Ni, Zn; M′ = Nb, Ta) perovskites. Chem Mater 16:2148–2156

    CAS  Google Scholar 

  4. Byeon SH, Lufaso MW, Parise JB, Woodward PM, Hansen T (2003) High-pressure synthesis and characterization of perovskites with simultaneous ordering of both the A- and B-site cations, CaCu3Ga2M2O12 (M = Sb, Ta). Chem Mater 15:3798–3804

    CAS  Google Scholar 

  5. Byeon SH, Lee SS, Parise JB, Woodward PM, Hur NH (2005) A new ferrimagnetic oxide CaCu3Cr2Sb2O12: high-pressure synthesis, structure, and magnetic properties. Chem Mater 17:3552–3557

    CAS  Google Scholar 

  6. Zhou JS, Goodenough JB (2005) Universal octahedral-site distortion in orthorhombic perovskite oxides. Phys Rev Lett 94:065501

    Google Scholar 

  7. Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, Ontario

    Google Scholar 

  8. Brown D (2013) Bond valence theory. Struct Bond. doi:10.1007/430_2012_89

    Google Scholar 

  9. Brown ID (2006) The chemical bond in inorganic chemistry: the bond valence model, International Union of Crystallography monographs on crystallography; 12. Oxford University Press, Oxford, p 278

    Google Scholar 

  10. Thomas NW (1998) A new global parameterization of perovskite structures. Acta Crystallogr B 54:585–599

    Google Scholar 

  11. Brown ID (2012) Bond valence parameters. http://www.iucr.org/resources/data/datasets/bond-valence-parameters. Accessed 30 Nov 2012

  12. Abramov YA, Tsirelson VG, Zavodnik VE, Ivanov SA, Brown ID (1995) The chemical bond and atomic displacements in SrTiO3 from X-ray diffraction analysis. Acta Crystallogr B B51:942–951

    CAS  Google Scholar 

  13. Mann M, Jackson S, Kolis J (2010) Hydrothermal crystal growth of the potassium niobate and potassium tantalate family of crystals. J Solid State Chem 183:2675–2680

    CAS  Google Scholar 

  14. Shimizu Y, Syono Y, Akimoto S (1970) High-pressure transformations in SrGeO3, SrSiO3, BaGeO3, and BaSiO3. High Temperatures – High Pressures 2:113–120

    CAS  Google Scholar 

  15. Casais MT, Alonso JA, Rasines I, Hidalgo MA (1995) Preparation, neutron structural study and characterization of BaNbO3: a Pauli-like metallic perovskite. Mater Res Bull 30:201–208

    CAS  Google Scholar 

  16. Brixner LH (1960) X-ray study and electrical properties of the system BaxSr(1-x)MoO3. J Inorg Nucl Chem 14:225–230

    CAS  Google Scholar 

  17. Rey MJ, Dehaudt P, Joubert JC, Lambert-Andron B, Cyrot M, Cyrot-Lackmann F (1990) Preparation and structure of the compounds SrVO3 and Sr2VO4. J Solid State Chem 86:101–108

    CAS  Google Scholar 

  18. Smith AJ, Welch AJE (1960) Some mixed metal oxides of perovskite structure. Acta Crystallogr 13:653–656

    CAS  Google Scholar 

  19. Dickens PG, Powell AV (1991) Powder neutron diffraction study of potassium uranate(V), KUO3. J Mater Chem 1:137–138

    CAS  Google Scholar 

  20. Levin I, Amos TG, Bell SM, Farber L, Vanderah TA, Roth RS, Toby BH (2003) Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO3–CaZrO3 system. J Solid State Chem 175:170–181

    CAS  Google Scholar 

  21. Hutton J, Nelmes RJ, Scheel HJ (1981) Extinction corrections for a highly perfect crystal (SrTiO3). Acta Crystallogr A 37:916–920

    Google Scholar 

  22. Liu G, Zhao X, Eick HA (1992) The synthesis, structure and characterization of SrMoO2.6 15N0.4. J Alloys Compd 187:145–156

    CAS  Google Scholar 

  23. Zhao C, Feng S, Chao Z, Shi C, Xu R, Ni J (1996) Hydrothermal synthesis of the complex fluorides LiBaF3 and KMgF3 with perovskite structures under mild conditions. Chem Commun 1641–1642

    Google Scholar 

  24. Kijima N, Tanaka K, Marumo F (1983) Electron-density distributions in crystals of KMnF3 and KNiF3. Acta Crystallogr B 39:557–561

    Google Scholar 

  25. Buttner RH, Maslen EN (1988) Electron difference density in potassium zinc fluoride perovskite. Acta Crystallogr C 44:1707–1709

    Google Scholar 

  26. Kijima N, Tanaka K, Marumo F (1981) Electron density distribution in crystals of potassium trifluorocobaltate(II). Acta Crystallogr B 37:545–548

    Google Scholar 

  27. Miyata N, Tanaka K, Marumo F (1983) Electron density distribution in crystals of iron(II) potassium trifluoride. Acta Crystallogr B 39:561–564

    Google Scholar 

  28. Hutton J, Nelmes RJ (1981) High-resolution studies of cubic perovskites by elastic neutron diffraction II: SrTiO3, KMnF3, RbCaF3 and CsPbCl3. J Phys C: Solid State Phys 14:1713–1736

    CAS  Google Scholar 

  29. Brown ID, Klages P, Skowron A (2003) Influence of pressure on the lengths of chemical bonds. Acta Crystallogr B 59:439–448

    Google Scholar 

  30. Tavora Weber I, Audebrand N, Bouquet V, Guilloux-Viry M, Perrin A (2006) KTaO3 powders and thin films prepared by polymeric precursor method. Solid State Sci 8:606–612

    Google Scholar 

  31. Zhurova EA, Ivanov Y, Zavodnik V, Tsirelson V (2000) Electron density and atomic displacements in KTaO3. Acta Crystallogr B 56:594–600

    CAS  Google Scholar 

  32. Stitzer KE, Smith MD, zur Loye HC (2002) Crystal growth of Ba2MOsO6 (M = Li, Na) from reactive hydroxide fluxes. Solid State Sci 4:311–316

    CAS  Google Scholar 

  33. Martinez-Lope MJ, Alonso JA, Casais MT (2003) Synthesis, crystal and magnetic structure of the double perovskites A2NiMoO6 (A = Sr, Ba): a neutron diffraction study. Eur J Inorg Chem 2839–2844

    Google Scholar 

  34. Tezuka K, Henmi K, Hinatsu Y, Masaki NM (2000) Magnetic susceptibilities and Mossbauer spectra of perovskites A2FeNbO6 (A = Sr, Ba). J Solid State Chem 154:591–597

    CAS  Google Scholar 

  35. Martinez-Lope MJ, Alonso JA, Casais MT, Fernandez-Diaz MT (2002) Preparation, crystal and magnetic structure of the double perovskites Ba2CoBO6 (B = Mo, W). Eur J Inorg Chem 2463–2469

    Google Scholar 

  36. Patwe SJ, Achary SN, Tyagi AK (2005) Synthesis, phase transition and thermal expansion studies on M2MgWO6 (M = Ba2+ and Sr2+) double perovskites. J Alloys Compd 390:100–105

    CAS  Google Scholar 

  37. Iwakura H, Einaga H, Teraoka Y (2010) Relationship between cation arrangement and photocatalytic activity for Sr–Al–Nb–O double perovskite. Inorg Chem 49:11362–11369

    CAS  Google Scholar 

  38. Woodward PM (1996) Structural distortions, phase transitions, and cation ordering in the perovskite and tungsten trioxide structures. Oregon State University, Corvallis

    Google Scholar 

  39. Ouchetto K, Archaimbault F, Pineau A, Choisnet J (1991) Chemical and structural characterization of a new barium ceroplatinate – Ba2CePtO6 a double perovskite mixed-oxide. J Mater Sci Lett 10:1277–1279

    CAS  Google Scholar 

  40. Azad AK, Ivanov SA, Eriksson SG, Eriksen J, Rundlof H, Mathieu R, Svedlindh P (2001) Synthesis, crystal structure, and magnetic characterization of the double perovskite Ba2MnWO6. Mater Res Bull 36:2215–2228

    CAS  Google Scholar 

  41. Amador U, Hetherington CJD, Moran E, Alario-Franco MA (1992) Ba2PrPtO6 – a novel double perovskite. J Solid State Chem 96:132–140

    CAS  Google Scholar 

  42. Dianoux AJ, Poix P (1968) ETude cristallographique et paramagnetique de l’oxyde mixte Ba2UFeO6 comportant de l’uranium U5+. C R Hebd Seances Acad Sci 266:283–285

    CAS  Google Scholar 

  43. Baldinozzi G, Grebille D, Sciau P, Kiat JM, Moret J, Berar JF (1998) Rietveld refinement of the incommensurate structure of the elpasolite (ordered perovskite) Pb2MgTeO6. J Phys Condens Matter 10:6461–6472

    CAS  Google Scholar 

  44. Doi Y, Hinatsu Y, Nakamura A, Ishii Y, Morii Y (2003) Magnetic and neutron diffraction studies on double perovskites A2LnRuO6 (A = Sr, Ba; Ln = Tm, Yb). J Mater Chem 13:1758–1763

    CAS  Google Scholar 

  45. Battle PD, Jones CW (1989) The crystal and magnetic-structures of Sr2LuRuO6, Ba2YRuO6, and Ba2LuRuO6. J Solid State Chem 78:108–116

    CAS  Google Scholar 

  46. Arulraj A, Ramesha K, Gopalakrishnan J, Rao CNR (2000) Magnetoresistance in the double perovskite Sr2CrMoO6. J Solid State Chem 155:233–237

    CAS  Google Scholar 

  47. Choy JH, Hong ST, Choi KS (1996) Crystal structure, magnetism and phase transformation in perovskites A2CrNbO6 (A = Ca, Sr, Ba). J Chem Soc-Faraday Trans 92:1051–1059

    CAS  Google Scholar 

  48. Taira N, Hinatsu Y (2000) Magnetic susceptibility of Ba2YbTaO6 with the ordered perovskite structure and electron paramagnetic resonance of Yb3+ doped in Ba2LuTaO6. J Solid State Chem 150:31–35

    CAS  Google Scholar 

  49. Izumiyama Y, Doi Y, Wakeshima M, Hinatsu Y, Nakamura A, Ishii I (2002) Magnetic and calorimetric studies on ordered perovskite Ba2ErRuO6. J Solid State Chem 169:125–130

    CAS  Google Scholar 

  50. Doi Y, Hinatsu Y (2001) Magnetic properties of ordered perovskites Ba2LnTaO6 (Ln = Y, lanthanides). J Phys Condens Matter 13:4191–4202

    CAS  Google Scholar 

  51. Grenet JC, Poix P, Michel A (1972) Determinations crystallographiques et magnetiques sur l’oxyde mixte de formule Ba2MnUO6. Ann Chim (Paris) 1972:231–234

    Google Scholar 

  52. Hinatsu Y, Izumiyama Y, Doi Y, Alemi A, Wakeshima M, Nakamura A, Morii Y (2004) Studies on magnetic and calorimetric properties of double perovskites Ba2HoRuO6 and Ba2HoIrO6. J Solid State Chem 177:38–44

    CAS  Google Scholar 

  53. Barnes PW, Lufaso MW, Woodward PM (2006) Structure determination of A2M3+TaO6 and A2M3+NbO6 ordered perovskites: octahedral tilting and pseudosymmetry. Acta Crystallogr B B62:384–396

    CAS  Google Scholar 

  54. Fu WT, Ijdo DJW (2005) Re-examination of the structure of Ba2MIrO6 (M = La, Y): space group revised. J Alloys Compd 394:L5–L8

    CAS  Google Scholar 

  55. Karunadasa H, Huang Q, Ueland BG, Schiffer P, Cava RJ (2003) Ba2LnSbO6 and Sr2LnSbO6 (Ln = Dy, Ho, Gd) double perovskites: lanthanides in the geometrically frustrating fcc lattice. Proc Natl Acad Sci USA 100:8097–8102

    CAS  Google Scholar 

  56. Fu WT, Ijdo DJW (1997) On the structure of BaTl0.5Sb0.5O3: an ordered perovskite. J Solid State Chem 128:323–325

    CAS  Google Scholar 

  57. Jung D, Gravereau P, Demazeau G (1993) Stabilization of six-coordinated iridium(VI) in a perovskite oxygen lattice Ba2MIrO6 (M = Ca, Sr. Eur J Solid State Inorg Chem 30:1025–1037

    CAS  Google Scholar 

  58. Alonso JA, Cascales C, Casado PG, Rasines I (1997) On characterization of barium rare-earth antimonates: ordered perovskites suitable as substrates for superconducting films. J Solid State Chem 128:247–250

    CAS  Google Scholar 

  59. Fu WT, Ijdo DJW (2005) X-ray and neutron powder diffraction study of the double perovskites Ba2LnSbO6 (Ln = La, Pr, Nd and Sm). J Solid State Chem 178:2363–2367

    CAS  Google Scholar 

  60. Day BE, Bley ND, Jones HR, McCullough RM, Eng HW, Porter SH, Woodward PM, Barnes PW (2012) Structures of ordered tungsten- or molybdenum-containing quaternary perovskite oxides. J Solid State Chem 185:107–116

    CAS  Google Scholar 

  61. Woodward PM (1997) Octahedral tilting in perovskites. 1. Geometrical considerations. Acta Crystallogr B 53:32–43

    Google Scholar 

  62. Woodward PM (1997) Octahedral tilting in perovskites. 2. Structure stabilizing forces. Acta Crystallogr B 53:44–66

    Google Scholar 

  63. Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Crystallogr B 28:3384–3392

    CAS  Google Scholar 

  64. Glazer AM (2011) A brief history of tilts. Phase Transitions 84:405–420

    CAS  Google Scholar 

  65. Howard CJ, Stokes HT (1998) Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr B 54:782–789

    Google Scholar 

  66. Woodward PM (1997) POTATO – a program for generating perovskite structures distorted by tilting of rigid octahedra. J Appl Crystallogr 30:206–207

    Google Scholar 

  67. O'Keeffe M, Hyde BG (1977) Some structures topologically related to cubic perovskite (E21), ReO3 (D09) and Cu3Au (L12). Acta Crystallogr B B33:3802–3813

    Google Scholar 

  68. Lufaso MW (2002) Perovskite synthesis and analysis using structure prediction diagnostic software. The Ohio State University, Columbus

    Google Scholar 

  69. Brown ID (2009) Recent developments in the methods and applications of the bond valence model. Chem Rev 109:6858–6919

    CAS  Google Scholar 

  70. Subramanian MA, Aravamudan G, Rao GVS (1983) Oxide pyrochlores – a review. Prog Solid State Chem 15:55–143

    CAS  Google Scholar 

  71. Kennedy BJ, Hunter BA, Howard CJ (1997) Structural and bonding trends in tin pyrochlore oxides. J Solid State Chem 130:58–65

    CAS  Google Scholar 

  72. Kennedy BJ (1995) Structure refinement of Y2Ru2O7 by neutron powder diffraction. Acta Crystallogr C 51:790–792

    Google Scholar 

  73. Haile SM, Wuensch BJ, Prince E (1990) Neutron Rietveld analysis of anion and cation disorder in the fast-ion conducting pyrochlore system yttrium zirconium titanium oxide (Y2(ZrxTi1-x)2O7). In: Materials Research Society symposium proceedings: neutron scattering for materials science, vol. 166, Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, pp 81–86

    Google Scholar 

  74. Yamamoto T, Kanno R, Takeda Y, Yamamoto O, Kawamoto Y, Takano M (1994) Crystal structure and metal–semiconductor transition of the Bi2-xLnxRu2O7 pyrochlores (Ln = Pr-Lu). J Solid State Chem 109:372–383

    CAS  Google Scholar 

  75. Knop O, Brisse F, Castelliz L (1969) Pyrochlores. V. Thermoanalytic, X-ray, neutron, infrared, and dielectric studies of A2Ti2O7 titanates. Can J Chem 47:971–990

    CAS  Google Scholar 

  76. Chtoun E, Hanebali H, Pierre G (2001) X-ray Rietveld analysis of (1-x)A2Ti2O7-(x)Fe2TiO5 (A = Eu, Y) solid solutions. Ann Chim (Paris) 26:27–32

    CAS  Google Scholar 

  77. Kobayashi H, Kanno R, Kawamoto Y, Kamiyama T, Izumi F, Sleight AW (1995) Synthesis, crystal structure, and electrical properties of the pyrochlores Pb2-xLnxRu2O7-y(Ln = Nd, Gd). J Solid State Chem 114:15–23

    CAS  Google Scholar 

  78. Reimers JN, Greedan JE, Sato M (1988) The crystal structure of the spin-glass pyrochlore, Y2Mo2O7. J Solid State Chem 72:390–394

    CAS  Google Scholar 

  79. Shimakawa Y, Kubo Y, Hamada N, Jorgensen JD, Hu Z, Short S, Nohara M, Takagi H (1999) Crystal structure, magnetic and transport properties, and electronic band structure of A2Mn2O7 pyrochlores (A = Y, In, Lu, and Tl). Phys Rev B 59:1249–1254

    CAS  Google Scholar 

  80. Subramanian MA, Torardi CC, Johnson DC, Pannetier J, Sleight AW (1988) Ferromagnetic R2Mn2O7 pyrochlores (R = Dy-Lu, Y). J Solid State Chem 72:24–30

    CAS  Google Scholar 

  81. Soderholm L, Greedan JE (1982) Relationship between crystal structure and magnetic properties of (RE)2V2O7; RE = Lu, Yb, Tm. Mater Res Bull 17:707–713

    CAS  Google Scholar 

  82. Dem'yanets LN, Radaev SF, Mamin BF, Maksimov BA (1988) Synthesis and atomic structure of pyrochlore-type Yb2Ge2O7 crystals. J Struct Chem 29:485–487

    Google Scholar 

  83. Kennedy BJ, Vogt T (1996) Structural and bonding trends in ruthenium pyrochlores. J Solid State Chem 126:261–270

    CAS  Google Scholar 

  84. Knop O, Brisse F, Castelliz L (1965) Determination of the crystal structure of erbium titanate, Er2Ti2O7, by x-ray and neutron diffraction. Can J Chem 43:2812–2826

    CAS  Google Scholar 

  85. Kennedy BJ (1996) Structural trends in pyrochlore oxides. Mater Sci Forum 228–231:753–758

    Google Scholar 

  86. Isupov VA (1958) Geometric criteria of structures of the pyrochlore type. Kristallografiya 3:99–100

    CAS  Google Scholar 

  87. Cai L, Arias AL, Nino JC (2011) The tolerance factors of the pyrochlore crystal structure. J Mater Chem 21:3611–3618

    CAS  Google Scholar 

  88. Vanderah TA, Levin I, Lufaso MW (2005) An unexpected crystal-chemical principle for the pyrochlore structure. Eur J Inorg Chem 14:2895–2901

    Google Scholar 

  89. Nakatsuka A, Ikeda Y, Yamasaki Y, Nakayama N, Mizota T (2003) Cation distribution and bond lengths in CoAl2O4 spinel. Solid State Commun 128:85–90

    CAS  Google Scholar 

  90. Redfern SA, Harrison RJ, O'Neill HSC, Wood DRR (1999) Thermodynamics and kinetics of cation ordering in MgAl2O4 up to 1600 C from in situ neutron diffraction. Am Mineral 84:299–310

    CAS  Google Scholar 

  91. O'Neill HSC, Dollase WA (1994) Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4. Phys Chem Minerals 20:541–555

    Google Scholar 

  92. Harrison RJ, Redfern SAT, O'Neill HSC (1998) The temperature dependence of the cation distribution in synthetic hercynite (FeAl2O4) from in-situ neutron structure refinements. Am Mineral 83:1092–1099

    CAS  Google Scholar 

  93. Ueno G, Sato S, Kino Y (1999) The low-temperature phase of NiCr2O4. Acta Crystallogr C 39:1963–1966

    Google Scholar 

  94. Sawada H (1997) Electron density study of spinels: zinc chromium oxide. Mater Res Bull 32:873–879

    CAS  Google Scholar 

  95. Wendschuh-Josties M, O'Neill HSC, Bente K, Brey G (1995) Lattice and oxygen parameters of ZnGa2O4 as a function of equilibriation temperature. Neus Jahrbuch Mineralogie 1995(6):273–280

    Google Scholar 

  96. Shirane G, Cox DE (1964) Magnetic structure in FeCr2S4 and FeCr2O4. J Appl Phys 35:954–955

    CAS  Google Scholar 

  97. Hirota K, Inoue T, Mochida N, Ohtsuka A (1990) Study of germanium spinels (Part 3). J Ceram Soc Japan (Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi) 98:976–986

    CAS  Google Scholar 

  98. Liu X, Prewitt CT (1990) High-temperature X-ray diffraction study of Co3O4: transition from normal to disordered spinel. Phys Chem Minerals 17:168–172

    CAS  Google Scholar 

  99. Reuter B, Riedel E, Hug P, Arndt D, Geisler U, Behnke J (1969) Zur kristallochemie der vanadin(III)-spinelle. Z Anorg Allgemeine Chem 369:306–312

    CAS  Google Scholar 

  100. Rueedorff W, Reuter B (1947) Die struktur der magnesium- und zink-vanadinspinelle. Z Anorg Allgemeine Chem 253:194–208

    Google Scholar 

  101. Schaefer W, Kockelmann W, Potzel W, Martin A, Campbell SJ (1997) Neutron diffraction data on preparation dependent variations of structural and magnetic order in ZnFe2O4 spinels. Z Kristallogr 15:167

    Google Scholar 

  102. Stone SF, Arean CO, Diez Vinuela JS, Platero EE (1985) Structural characterization of cadmium-copper gallium oxide (CdxCu1-xGa2O4) spinels. J Chem Soc-Faraday Trans 81:1255–1261

    CAS  Google Scholar 

  103. Wessels AL, Czekalla R, Jeitschko W (1998) Structure of the mercury(II) chromate(III) HgCr2O4 and lattice constants of isotypic mercury(I) compounds Hg2MoO4 and Hg2WO4. Mater Res Bull 33:95–101

    CAS  Google Scholar 

  104. Arean CO, Diaz EG, Gonzales JMR, Garcia MAV (1988) Crystal structure of cadmium-zinc ferrites. J Solid State Chem 77:275–280

    Google Scholar 

  105. Agarwala RP (1961) Structure of cadmium rhodite, CdRh2O4. Z Anorg Allgemeine Chem 307:205–207

    Google Scholar 

  106. Yagi T, Marumo F, Akimoto SI (1974) Crystal structures of spinel polymorphs of Fe2SiO4 and Ni2SiO4. Am Mineral 59:486–490

    CAS  Google Scholar 

  107. Marumo F, Isobe M, Akimoto S (1977) Electron-density distributions in crystals of gamma-Fe2SiO4 and gamma-Co2SiO4. Acta Crystallogr B 33:713–716

    Google Scholar 

  108. Welch MD, Cooper MA, Hawthorne FC (2001) The crystal structure of brunogeierite, Fe2GeO4. Mineral Mag 65:441–444

    CAS  Google Scholar 

  109. von Dreele RB, Navrotsky A (1977) Refinement of the crystal structure of Mg2GeO4. Acta Crystallogr B 33:2287–2288

    Google Scholar 

  110. Marumo F, Isobe M (1974) Electron-density distribution in crystals of gamma Ni2SiO4. Acta Crystallogr B 30:1904–1906

    Google Scholar 

  111. Geller S (1967) Crystal chemistry of the garnets. Z Kristallogr 125:1–47

    CAS  Google Scholar 

  112. Rodic D, Mitric M, Tellgren R, Rundlof H (2001) The cation distribution and magnetic structure of Y3Fe(5−x)AlxO12. J Magn Magn Mater 232:1–8

    CAS  Google Scholar 

  113. Rodic D, Mitric M, Tellgren R, Rundlof H, Kremenovic A (1999) True magnetic structure of the ferrimagnetic garnet Y3Fe5O12 and magnetic moments of iron ions. J Magn Magn Mater 191:137–145

    CAS  Google Scholar 

  114. Euler F, Bruce JA (1965) Oxygen coordinates of compounds with garnet structure. Acta Crystallogr 19:971–978

    CAS  Google Scholar 

  115. Weidenborner JE (1961) Least squares refinement of the structure of gadolinium-iron garnet, Gd3Fe2Fe3O12. Acta Crystallogr 14:1051–1056

    CAS  Google Scholar 

  116. Dukhovskaya EL, Saksonov YG, Titova AG (1973) Oxygen parameters of certain compounds with the garnet structure. Izvestiya Akad Nauk SSSR Neorganicheskie Mater 9:809–813

    Google Scholar 

  117. Guo L, Huang K, Chen Y, Li G, Yuan L, Peng W, Yuan H, Feng S (2011) Mild hydrothermal synthesis and ferrimagnetism of Pr3Fe5O12 and Nd3Fe5O12 garnets. J Solid State Chem 184:1048–1053

    CAS  Google Scholar 

  118. Nakatsuka A, Yoshiasa A, Takeno S (1995) Site preference of cations and structural variation in Y3Fe5-xGaxO12 (0 < x < 5) solid solutions with garnet structure. Acta Crystallogr B 51:737–745

    Google Scholar 

  119. Sawada H (1997) Electron density study of garnets: Z3Ga5O12; Z = Nd, Sm, Gd, Tb. J Solid State Chem 132:300–307

    CAS  Google Scholar 

  120. Patzke G, Wartchow R, Binnewies M (1999) Crystal structure of triholmium pentagallium dodecaoxide, Ho3Ga2(GaO4)3 and of tridysprosium pentagallium dodecaoxide, Dy3Ga2(GaO4)3. New Cryst Struct (Z Kristallogr) 214:143–144

    CAS  Google Scholar 

  121. Lipp C, Strobel S, Lissner F, Niewa R (2012) Garnet-type Mn3Cr2(GeO4)3. Acta Crystallogr E 68:35

    Google Scholar 

  122. Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825

    CAS  Google Scholar 

  123. De Pape R, Portier J, Gauthier G, Hagenmuller P (1967) Fluorinated garnets of the transition elements, Na3Li3M2F12 (M = titanium, vanadium, chromium, iron, or cobalt). C R Hebd Seances Acad Sci 265:1244–1246

    Google Scholar 

  124. Bouzemi B, Boughzala H, Jouini T (2002) Na3Cr2(AsO4)3 trisodium dichromium(III) triarsenate. Acta Crystallogr E 58:117–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Lufaso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lufaso, M.W., Woodward, P.M. (2013). Using Bond Valences to Model the Structures of Ternary and Quaternary Oxides. In: Brown, I., Poeppelmeier, K. (eds) Bond Valences. Structure and Bonding, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2012_90

Download citation

Publish with us

Policies and ethics