Skip to main content

Structural Information from Spin-Labelled Membrane-Bound Proteins

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 152))

Abstract

Site-directed spin labelling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for the investigation of the structure and conformational dynamics of biomolecules including membrane proteins under native-like conditions. EPR spectroscopy of the spin-labelled molecules provides information about the spin label side chain mobility, its solvent accessibility, the polarity of its immediate environment and intra- or intermolecular distances to another paramagnetic centre or spin label. This chapter provides an overview of the basics as well as recent progress in SDSL and related EPR techniques. Continuous wave EPR spectra analyses and pulse EPR techniques are reviewed with special emphasis on applications to the membrane-embedded sensory rhodopsin–transducer complex mediating the photophobic response of the halophilic archaeum Natronomonas pharaonis, the maltose ABC importer MalFGK2 and the mechanosensitive channel MscS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CrOx:

Chromium oxalate

cw:

Continuous wave

DEER:

Double electron–electron resonance

DPPH:

Diphenylpikrylhydrazine

DQC:

Double quantum coherence

EPR:

Electron paramagnetic resonance

HtrII:

Halobacterial transducer II

MD:

Molecular dynamics

MOMD:

Microscopic ordering with macroscopic disordering model

NiEDDA:

Ni(II)-ethylenediaminediacetate

PDB:

Protein data bank

PELDOR:

Pulsed electron double resonance

SDSL:

Site-directed spin labelling

SR-EPR:

Saturation recovery EPR

SRII:

Sensory rhodopsin II

SRLS:

Slowly relaxing local structure

T4L:

T4 lysozyme

References

  1. Altenbach C, Flitsch SL, Khorana HG, Hubbell WL (1989) Structural studies on transmembrane proteins, 2: spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28:7806–7812

    CAS  Google Scholar 

  2. Altenbach C, Marti T, Khorana HG, Hubbell WL (1990) Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248:1088–1092

    CAS  Google Scholar 

  3. Bordignon E, Steinhoff HJ (2007) Membrane protein structure and dynamics studied by site-directed spin labeling ESR. In: Hemminga MA, Berliner LJ (eds) ESR spectroscopy in membrane biophysics. Springer, New York, pp 129–164

    Google Scholar 

  4. Hubbell WL, Mchaourab HS, Altenbach C, Lietzow MA (1996) Watching proteins move using site-directed spin labeling. Structure 4:779–783

    CAS  Google Scholar 

  5. Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8:649–656

    CAS  Google Scholar 

  6. Klare JP, Steinhoff HJ (2009) Spin labeling EPR. Photosynth Res 102:377–390

    CAS  Google Scholar 

  7. Klug CS, Feix JB (2008) Methods and applications of site-directed spin labeling EPR spectroscopy. In: Correia JJ, Detrich HW (eds) Methods in cell biology. Biophysical tools for biologists, volume one: in vitro techniques. Academic, New York, pp 617–658

    Google Scholar 

  8. Berliner LJ (ed) (1976) Spin labeling: theory and applications. Academic, New York

    Google Scholar 

  9. Berliner LJ (ed) (1979) Spin labeling II: theory and applications. Academic, New York

    Google Scholar 

  10. Berliner LJ, Reuben J (eds) (1989) Spin labeling theory and applications, Biological magnetic resonance, vol 8. Plenum Press, New York

    Google Scholar 

  11. Columbus L, Kalai T, Jekö J, Hideg K, Hubbell WL (2001) Molecular motion of spin labeled side chains in α-helices: analysis by variation of side chain structure. Biochemistry 40:3828–3846

    CAS  Google Scholar 

  12. Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27:288–295

    CAS  Google Scholar 

  13. Fleissner MR, Cascio D, Hubbell WL (2009) Structural origin of weakly ordered nitroxide motion in spin-labeled proteins. Protein Sci 18:893–908

    CAS  Google Scholar 

  14. Fleissner MR, Bridges MD, Brooks EK, Cascio D, Kalai T, Hideg K, Hubbell WL (2011) Structure and dynamics of a conformationally constrained nitroxide side chain and applications in EPR spectroscopy. Proc Natl Acad Sci USA 108:16241–16246

    CAS  Google Scholar 

  15. Mchaourab HS, Lietzow MA, Hideg K, Hubbell WL (1996) Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35:7692–7704

    CAS  Google Scholar 

  16. Voet D, Voet JG (2004) Biochemistry, 3rd edn. Wiley, New York

    Google Scholar 

  17. Qin PZ, Hideg K, Feigon J, Hubbell WL (2003) Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry 42:6772–6783

    CAS  Google Scholar 

  18. Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL (2001) Crystal structure of sensory rhodopsin II at 2.4 Å: insights into color tuning and transducer interaction. Science 293:1499–1503

    CAS  Google Scholar 

  19. Isas JM, Langen R, Haigler HT, Hubbell WL (2002) Structure and dynamics of a helical hairpin and loop region in annexin 12: a site-directed spin labeling study. Biochemistry 41:1464–1473

    CAS  Google Scholar 

  20. Steinhoff HJ, Hubbell WL (1996) Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins. Biophys J 71:2201–2212

    CAS  Google Scholar 

  21. Beier C, Steinhoff HJ (2006) A structure-based simulation approach for electron paramagnetic resonance spectra using molecular and stochastic dynamics simulations. Biophys J 91:2647–2664

    CAS  Google Scholar 

  22. Barnes JP, Liang Z, Mchaourab HS, Freed JH, Hubbell WL (1999) A multifrequency electron spin resonance study of T4 lysozyme dynamics. Biophys J 76:3298–3306

    CAS  Google Scholar 

  23. Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH (2001) Electron spin resonance in studies of membranes and proteins. Science 291:266–269

    CAS  Google Scholar 

  24. Freed JH (1976) Theory of slow tumbling ESR spectra for nitroxides. In: Berliner LJ (ed) Spin labeling: theory and applications. Academic, New York, pp 53–132

    Google Scholar 

  25. Budil DE, Sale KL, Khairy K, Fajer PG (2006) Calculating slow-motional electron paramagnetic resonance spectra from molecular dynamics using a diffusion operator approach. J Phys Chem A 110:3703–3713

    CAS  Google Scholar 

  26. DeSensi SC, Rangel DP, Beth AH, Lybrand TP, Hustedt EJ (2008) Simulation of nitroxide electron paramagnetic resonance spectra from Brownian trajectories and molecular dynamics simulations. Biophys J 94:3798–3809

    CAS  Google Scholar 

  27. Oganesyan VS (2007) A novel approach to the simulation of nitroxide spin label EPR sdpectra from a single truncated dynamical trajectory. J Magn Reson 188:196–205

    CAS  Google Scholar 

  28. Sezer D, Freed JH, Roux B (2008) Parametrization, molecular dynamics simulation, and calculation of electron spin resonance spectra of a nitroxide spin label on a polyalanine α-helix. J Phys Chem B 112:5755–5767

    CAS  Google Scholar 

  29. Sezer D, Freed JH, Roux B (2008) Simulating electron spin resonance spectra of nitroxide spin labels from molecular dynamics and stochastic trajectories. J Chem Phys 128:165106–165116

    Google Scholar 

  30. Steinhoff HJ, Müller M, Beier C, Pfeiffer M (2000) Molecular dynamics simulation and EPR spectroscopy of nitroxide side chains in bacteriorhodopsin. J Mol Liquids 84:17–27

    CAS  Google Scholar 

  31. Gajula P, Borovykh IV, Beier C, Shkuropatova T, Gast P, Steinhoff HJ (2007) Spin-labeled photosynthetic reaction centers from Rhodobacter sphaeroides studied by electron paramagnetic resonance spectroscopy and molecular dynamics simulation. Appl Magn Reson 31:167–178

    CAS  Google Scholar 

  32. Dalton L (ed) (1985) EPR and advanced EPR studies of biological systems. CRC, Boca Raton

    Google Scholar 

  33. Budil DE, Earle KA, Freed JH (1993) Full determination of the rotational diffusion tensor by electron paramagnetic resonance at 250 GHz. J Phys Chem 97:1294–1303

    CAS  Google Scholar 

  34. Urban L (2012) PhD thesis, University of Osnabrück

    Google Scholar 

  35. Liang Z, Freed JH (1999) An assessment of the applicability of multifrequency ESR to study the complex dynamics of biomolecules. J Phys Chem B 103:6384–6396

    CAS  Google Scholar 

  36. Liang Z, Lou Y, Freed JH, Columbus L, Hubbell WL (2004) A multifrequency electron spin resonance study of T4 lysozyme dynamics using the slowly relaxing local structure model. J Phys Chem B 108:17649–17659

    CAS  Google Scholar 

  37. Zhang Z, Fleissner MR, Tipikin DS, Liang Z, Moscicki JK, Earle KA, Hubbell WL, Freed JH (2010) Multifrequency electron spin resonance study of the dynamics of spin labeled T4 lysozyme. J Phys Chem B 114:5503–5521

    CAS  Google Scholar 

  38. Polnaszek CF, Freed JH (1975) Electron spin resonance studies of anisotropic ordering, spin relaxation, and slow tumbling in liquid crystalline solvents. J Phys Chem 79:2283–2306

    CAS  Google Scholar 

  39. Freed JH (1977) Stochastic-molecular theory of spin–relaxation for liquid crystals. J Chem Phys 66:4183–4199

    CAS  Google Scholar 

  40. Cooper A (1976) Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci USA 73:2740–2741

    CAS  Google Scholar 

  41. Frauenfelder H, Parak FG, Young RD (1988) Conformational substates in proteins. Annu Rev Biophys Biophys Chem 17:451–479

    CAS  Google Scholar 

  42. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    CAS  Google Scholar 

  43. Guo ZF, Cascio D, Hideg K, Kalai T, Hubbell WL (2007) Structural determinants of nitroxide motion in spin-labeled proteins: tertiary contact and solvent-inaccessible sites in helix G of T4 lysozyme. Protein Sci 16:1069–1086

    CAS  Google Scholar 

  44. Guo ZF, Cascio D, Hideg K, Hubbell WL (2008) Structural determinants of nitroxide motion in spin-labeled proteins: solvent-exposed sites in helix B of T4 lysozyme. Protein Sci 17:228–239

    CAS  Google Scholar 

  45. Langen R, Oh KJ, Cascio D, Hubbell WL (2000) Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39:8396–8405

    CAS  Google Scholar 

  46. Lopez CJ, Fleissner MR, Guo Z, Kusnetzow AN, Hubbell WL (2009) Osmolyte perturbation reveals conformational equilibria in spin-labeled proteins. Protein Sci 18:1637–1652

    CAS  Google Scholar 

  47. Bridges MD, Hideg K, Hubbell WL (2010) Resolving conformational and rotameric exchange in spin-labeled proteins using saturation recovery EPR. Appl Magn Reson 37:363–390

    Google Scholar 

  48. McCoy J, Hubbell WL (2011) High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins. Proc Natl Acad Sci USA 108:1331–1336

    CAS  Google Scholar 

  49. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    CAS  Google Scholar 

  50. Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47:411–414

    CAS  Google Scholar 

  51. Kendrick BS, Chang BS, Arakawa T, Peterson B, Randolph TW, Manning MC, Carpenter JF (1997) Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: role in restricted conformational mobility and compaction of native state. Proc Natl Acad Sci USA 94:11917–11922

    CAS  Google Scholar 

  52. Cioni P, Bramanti E, Strambini GB (2005) Effects of sucrose on the internal dynamics of azurin. Biophys J 88:4213–4222

    CAS  Google Scholar 

  53. Timasheff S, Xie G (2003) Preferential interactions of urea with lysozyme and their linkage to protein denaturation. Biophys Chem 105:421–448

    CAS  Google Scholar 

  54. Lee JC, Timasheff SN (1981) The stabilization of proteins by sucrose. J Biol Chem 256:7193–7201

    CAS  Google Scholar 

  55. Huisjen M, Hyde JS (1974) A pulsed EPR spectrometer. Rev Sci Instrum 45:669–675

    CAS  Google Scholar 

  56. Percival PW, Hyde JS (1975) Pulsed EPR spectrometer, 2. Rev Sci Instrum 46:1522–1529

    CAS  Google Scholar 

  57. Li H, Akasaka K (2006) Conformational fluctuations of proteins revealed by variable pressure NMR. Biochim Biophys Acta 1764:331–345

    CAS  Google Scholar 

  58. Akasaka K (2006) Probing conformational fluctuations of proteins by pressure perturbation. Chem Rev 106:1814–1835

    CAS  Google Scholar 

  59. Bridgman PW (1914) The coagulation of albumen by pressure. J Biol Chem 19:511–512

    CAS  Google Scholar 

  60. Kauzmann W (1987) Thermodynamics of unfolding. Nature 325:763–764

    Google Scholar 

  61. Royer CA (2002) Revisiting volume changes in pressure-induced protein folding. Biochim Biophys Acta 1595:201–209

    Google Scholar 

  62. Altenbach C, Greenhalgh DA, Khorana HG, Hubbell WL (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci USA 91:1667–1671

    CAS  Google Scholar 

  63. Marsh D, Dzikovski BG, Livshits VA (2006) Oxygen profiles in membranes. Biophys J 90:L49–L51

    CAS  Google Scholar 

  64. Altenbach C, Froncisz W, Hemker R, Mchaourab HS, Hubbell WL (2005) Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR. Biophys J 89:2103–2112

    CAS  Google Scholar 

  65. Farahbakhsh ZZ, Altenbach C, Hubbell WL (1992) Spin labeled cysteines as sensors for protein lipid interaction and conformation in rhodopsin. Photochem Photobiol 56:1019–1033

    CAS  Google Scholar 

  66. Poole CP (1983) Electron spin resonance. Wiley, New York

    Google Scholar 

  67. Altenbach C, Froncisz W, Hyde JS, Hubbell WL (1989) Conformation of spin-labeled melittin at membrane surfaces investigated by pulse saturation recovery and continuous wave power saturation electron-paramagnetic resonance. Biophys J 56:1183–1191

    CAS  Google Scholar 

  68. Nielsen RD, Canaan S, Gladden JA, Gelb MH, Mailer C, Robinson BH (2004) Comparing continuous wave progressive power saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxides psin labels. J Magn Reson 169:129–163

    CAS  Google Scholar 

  69. Bordignon E, Klare JP, Döbber MA, Wegener AA, Martell S, Engelhard M, Steinhoff HJ (2005) Structural analysis of a HAMP domain: the linker region of the phototransducer in complex with sensory rhodopsin II. J Biol Chem 280:38767–38775

    CAS  Google Scholar 

  70. Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M (2002) Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487

    CAS  Google Scholar 

  71. Yin JJ, Pasenkiewicz-Gierula M, Hyde JS (1987) Lateral diffusion of lipids in membranes by pulse saturation recovery electron-spin-resonance. Proc Natl Acad Sci USA 84:964–968

    CAS  Google Scholar 

  72. Pyka J, Ilnicki J, Altenbach C, Hubbell WL, Froncisz W (2005) Accessibility and dynamics of nitroxide side chains in T4 lysozyme measured by saturation recovery EPR. Biophys J 89:2059–2068

    CAS  Google Scholar 

  73. Haas DA, Sugano T, Mailer C, Robinson BH (1993) Motion in nitroxide spin labels: direct measurement of rotational correlation times by pulsed electron double resonance. J Phys Chem 97:2914–2921

    CAS  Google Scholar 

  74. Robinson BH, Haas DA, Mailer C (1994) Molecular dynamics in liquids: spin-lattice relaxation of nitroxide spin labels. Science 263:490–493

    CAS  Google Scholar 

  75. Marsh D (2010) Spin-label EPR for determining polarity and proticity in biomolecular assemblies: transmembrane profiles. Appl Magn Reson 37:435–454

    Google Scholar 

  76. Stone AJ (1963) Gauge invariance of the g tensor. Proc R Soc Lond A 271:424–434

    Google Scholar 

  77. Möbius K, Savitsky A, Wegener C, Plato M, Fuchs M, Schnegg A, Dubinskii AA, Grishin YA, Grigor’ev IA, Kühn M, Duché D, Zimmermann H, Steinhoff HJ (2005) Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action. Magn Reson Chem 43:S4–S19

    Google Scholar 

  78. Steinhoff HJ, Savitsky A, Wegener C, Pfeiffer N, Plato M, Möbius K (2000) High-field EPR studies of the structure and conformational changes of site-directed spin labeled bacteriorhodopsin. Biochim Biophys Acta 1457:253–262

    CAS  Google Scholar 

  79. Wegener C, Savitsky A, Pfeiffer M, Möbius K, Steinhoff HJ (2001) High-Field EPR-detected shifts of magnetic tensor components of spin label side chains reveal protein conformational changes: the proton entrance channel of bacteriorhodopsin. Appl Magn Reson 21:441–452

    CAS  Google Scholar 

  80. Steinhoff HJ, Lieutnant K, Schlitter J (1989) Residual motion of hemoglobin-bound spin labels as a probe for protein dynamics. Z Naturforsch C 44:280–288

    CAS  Google Scholar 

  81. Brutlach H, Bordignon E, Urban L, Klare JP, Reyher HJ, Engelhard M, Steinhoff HJ (2006) High-field EPR and site-directed spin labeling reveal a periodical polarity profile: the sequence 88 to 94 of the phototransducer, NpHtrII, in complex with sensory rhodopsin, NpSRII. Appl Magn Reson 30:359–372

    CAS  Google Scholar 

  82. Steinhoff HJ, Radzwill N, Thevis W, Lenz V, Brandenburg D, Antson A, Dodson GG, Wollmer A (1997) Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X- ray structure. Biophys J 73:3287–3298

    CAS  Google Scholar 

  83. Smirnova TI, Smirnov AI, Paschenko SV, Poluektov OG (2007) Geometry of hydrogen bonds formed by lipid bilayer nitroxide probes: a high-frequency pulsed ENDOR/EPR study. J Am Chem Soc 129:3476–3477

    CAS  Google Scholar 

  84. Finiguerra MG, Blok H, Ubbink M, Huber M (2006) High-field (275 GHz) spin-label EPR for high-resolution polarity determination in proteins. J Magn Reson 180:197–202

    CAS  Google Scholar 

  85. Bordignon E, Brutlach H, Urban L, Hideg K, Savitsky A, Schnegg A, Gast P, Engelhard M, Groenen EJJ, Möbius K, Steinhoff HJ (2010) Heterogeneity in the nitroxide micro-environment: polarity and proticity effects in spin-labeled proteins studied by multi-frequency EPR. Appl Magn Reson 37:391–403

    Google Scholar 

  86. Borbat PP, Freed JH (2012) Pulse dipolar ESR: distance measurements. Struct Bond. doi:10.1007/430_2012_82

  87. Steinhoff HJ, Dombrowsky O, Karim C, Schneiderhahn C (1991) Two-dimensional diffusion of small molecules on protein surfaces: an EPR study of the restricted translational diffusion of protein-bound spin labels. Eur Biophys Lett 20:293–303

    CAS  Google Scholar 

  88. Rabenstein MD, Shin YK (1995) Determination of the distance between 2 spin labels attached to a macromolecule. Proc Natl Acad Sci USA 92:8239–8243

    CAS  Google Scholar 

  89. Altenbach CA, Oh KJ, Trabanino RJ, Hideg K, Hubbell WL (2001) Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: Experimental strategies and practical limitations. Biochemistry 40:15471–15482

    CAS  Google Scholar 

  90. Altenbach C, Hubbell WL (2008) Improved distance determination from dipolar broadening of EPR spectra, Biophys J 94, Supplement I, 826–832

    Google Scholar 

  91. Hustedt EJ, Smirnov AI, Laub CF, Cobb CE, Beth AH (1997) Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys J 72:1861–1877

    CAS  Google Scholar 

  92. McNulty JC, Silapie JL, Carnevali M, Farrar CT, Griffin RG, Formaggio F, Crisma M, Toniolo C, Millhauser GL (2001) Electron spin resonance of TOAC labeled peptides: folding transitions and high frequency spectroscopy. Biopolymers 55:479–485

    CAS  Google Scholar 

  93. Hanson P, Millhauser G, Formaggio F, Crisma M, Toniolo C (1996) ESR characterization of hexameric, helical peptides using double TOAC spin labeling. J Am Chem Soc 118:7618–7625

    CAS  Google Scholar 

  94. Hanson P, Anderson DJ, Martinez G, Millhauser G, Formaggio F, Crisma M, Toniolo C, Vita C (1998) Electron spin resonance and structural analysis of water soluble, alanine-rich peptides incorporating TOAC. Mol Phys 95:957–966

    CAS  Google Scholar 

  95. Rabenstein MD, Shin YK (1996) HIV-1 gp41 tertiary structure studied by EPR spectroscopy. Biochemistry 35:13922–13928

    CAS  Google Scholar 

  96. Xiao W, Poirier MA, Bennett MK, Shin YK (2001) The neuronal t-SNARE complex is a parallel four-helix bundle. Nat Struct Biol 8:308–311

    CAS  Google Scholar 

  97. Closs GL, Forbes MDE, Piotrowiak P (1992) Spin and reaction dynamics in flexible polymethylene biradicals as studied by EPR, NMR, and optical spectroscopy and magnetic field effects: measurements and mechanisms of scalar electron-spin spin coupling. J Am Chem Soc 114:3285–3294

    CAS  Google Scholar 

  98. Fiori WR, Millhauser GL (1995) Exploring the peptide 3(10)-helix-reversible-arrow-alpha-helix equilibrium with double-label electron-spin-resonance. Biopolymers 37:243–250

    CAS  Google Scholar 

  99. Eaton SS, More KM, Sawant BM, Eaton GR (1983) Use of the EPR half-field transition to determine the interspin distance and the orientation of the interspin vector in systems with two unpaired electrons. J Am Chem Soc 105:6560–6567

    CAS  Google Scholar 

  100. Persson M, Harbridge JR, Hammarstrom P, Mitri R, Martensson LG, Carlsson U, Eaton GR, Eaton SS (2001) Comparison of electron paramagnetic resonance methods to determine distances between spin labels on human carbonic anhydrase II. Biophys J 80:2886–2897

    CAS  Google Scholar 

  101. Borbat PP, Freed JH (1999) Multiple-quantum ESR and distance measurements. Chem Phys Lett 313:145–154

    CAS  Google Scholar 

  102. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142:331–340

    CAS  Google Scholar 

  103. Ward R, Bowman A, Sozudogru E, El-Mkami H, Owen-Hughes T, Norman DG (2010) EPR distance measurements in deuterated proteins. J Magn Reson 207:164–167

    CAS  Google Scholar 

  104. Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40:1–53

    CAS  Google Scholar 

  105. Banham JE, Baker CM, Ceola S, Day IJ, Grant GH, Groenen EJJ, Rodgers CT, Jeschke G, Timmel CR (2008) Distance measurements in the borderline region of applicability of CW EPR and DEER: a model study on a homologous series of spin-labelled peptides. J Magn Reson 191:202–218

    CAS  Google Scholar 

  106. Jeschke G (2012) Interpretation of dipolar EPR data in terms of protein structure. Struct Bond. doi:10.1007/430_2011_61

  107. Klare JP, Gordeliy VI, Labahn J, Büldt G, Steinhoff HJ, Engelhard M (2004) The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett 564:219–224

    CAS  Google Scholar 

  108. Klare JP, Chizhov I, Engelhard M (2007) Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. Results Probl Cell Differ 45:73–122

    Google Scholar 

  109. Klare JP, Bordignon E, Engelhard M, Steinhoff HJ (2011) Transmembrane signal transduction in archaeal phototaxis: the sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy. Eur J Cell Biol 90:731–739

    CAS  Google Scholar 

  110. Wegener AA, Klare JP, Engelhard M, Steinhoff HJ (2001) Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J 20:5312–5319

    CAS  Google Scholar 

  111. Döbber M, Bordignon E, Klare JP, Holterhues J, Martell S, Mennes N, Li L, Engelhard M, Steinhoff HJ (2008) Salt-driven equilibrium between two confromations in the HAMP domain from Natronomonas pharaonis: the language of signal transfer? J Biol Chem 283:28691–28701

    Google Scholar 

  112. Hulko M, Berndt F, Gruber M, Linder J, Truffault V, Schulz A, Martin J, Schultz JE, Lupas AN, Coles M (2006) The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126:929–940

    CAS  Google Scholar 

  113. Holland IB, Cole SPC, Kuchler K, Higgins CF (2002) ABC proteins: from bacteria to man. Academic, New York

    Google Scholar 

  114. Grote M, Polyhach Y, Jeschke G, Steinhoff HJ, Schneider E, Bordignon E (2009) Transmembrane signaling in the maltose ABC transporter MALFGK2-E: the periplasmic MalF-P2 loop communicates substrate availability to the ATP-bound MalK dimer. J Biol Chem 284:17521–17526

    CAS  Google Scholar 

  115. Oldham ML, Davidson AL, Chen J (2008) Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 18:726–733

    CAS  Google Scholar 

  116. Lu G, Westbrooks JM, Davidson AL, Chen J (2005) ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. Proc Natl Acad Sci USA 102:17969–17974

    CAS  Google Scholar 

  117. Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450:515–521

    CAS  Google Scholar 

  118. Grote M, Bordignon E, Polyhach Y, Jeschke G, Steinhoff HJ, Schneider E (2008) A comparative EPR study of the nucleotide-binding domains’ catalytic cycle in the assembled maltose ABC-importer. Biophys J 95:2924–2938

    CAS  Google Scholar 

  119. Vasquez V, Sotomayor M, Marien-Cortez D, Roux B, Schulten K, Perozo E (2008) Three-dimensional architecture of membrane-embedded MscS in the closed conformation. J Mol Biol 378:55–70

    CAS  Google Scholar 

  120. Vasquez V, Sotomayor M, Cordero-Morales J, Schulten K, Perozo E (2008) A structural mechanism for MscS gating in lipid bilayers. Science 321:1210–1214

    CAS  Google Scholar 

  121. Shelke SA, Sigurdsson STh (2011) Site-directed nitroxide spin labeling of biopolymers. Struct Bond. doi:10.1007/430_2011_62 (in the first volume of this series)

    Google Scholar 

  122. Plato M, Steinhoff H-J, Wegener C, Törring JT, Savitsky A, Möbius K (2002) Molecular orbital study of polarity and hydrogen bonding effects on the g and hyperfine tensors of site directed NO spin labelled bacteriorhodopsin. Mol Phys 100:3711–3721

    CAS  Google Scholar 

  123. Griffith OH, Dehlinger PJ, Van SP (1974) Shape of the hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes). J Membrane Biol 15:159–192

    CAS  Google Scholar 

  124. Klare JP, Bordignon E, Döbber MA, Fitter J, Kriegsmann J, Chizhov I, Steinhoff H-J, Engelhard M (2006) Effects of solubilization on the structure and function of the sensory Rhodopsin II/Transducer Complex. J Mol Biol 356:1207–1221

    CAS  Google Scholar 

  125. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham JE, Timmel CR, Hilger D, Jung H (2006) DeerAnalysis2006 - a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30:473–498

    CAS  Google Scholar 

  126. Likhtenshtein GI (1976) Spin labeling methods in molecular biology. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

Part of this work was supported by the Deutsche Forschungsgemeinschaft (SFB 944/P10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Jürgen Steinhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klare, J.P., Steinhoff, HJ. (2013). Structural Information from Spin-Labelled Membrane-Bound Proteins. In: Timmel, C., Harmer, J. (eds) Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences. Structure and Bonding, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2012_88

Download citation

Publish with us

Policies and ethics