Skip to main content

Cell-Specific Precursor Processing

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 50))

Abstract

The singular gene for a peptide hormone is expressed not only in a specific endocrine cell type but also in other endocrine cells as well as in entirely different cells such as neurons, adipocytes, myocytes, immune cells, and cells of the sex-glands. The cellular expression pattern for each gene varies with development, time and species. Endocrine regulation is, however, based on the release of a given hormone from an endocrine cell to the general circulation from whose cappilaries the hormone reaches the specific target cell elsewhere in the body. The widespread expression of hormone genes in different cells and tissues therefore requires control of biogenesis and secretion in order to avoid interference with the function of a specific hormonal peptide from a particular endocrine cell. Several mechanisms are involved in such control, one of them being cell-specific processing of prohormones. The following pages present four examples of such cell-specific processing and the implications of the phenomenon for the use of peptide hormones as markers of diseases. Notably, sick cells – not least the neoplastic cells – often process prohormones in a manner different from that of the normal endocrine cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baldissera FG, Holst JJ (1984) Glucagon-related peptides in the human gastrointestinal mucosa. Diabetologia 26:223–228

    PubMed  CAS  Google Scholar 

  • Bardram L (1990) Progastrin in serum from Zollinger-Ellison patients. An indicator of malignancy? Gastroenterology 98:1420–1426

    PubMed  CAS  Google Scholar 

  • Bardram L, Rehfeld JF (1988) Processing-independent radioimmunoanalysis: a general analytical principle applied to progastrin and its products. Anal Biochem 175:537–543

    PubMed  CAS  Google Scholar 

  • Bardram L, Hilsted L, Rehfeld JF (1989) Cholecystokinin, gastrin and their precursors in pheochromocytomas. Acta Endocrinol (Copenh) 120:479–484

    CAS  Google Scholar 

  • Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol 28:328–353

    Google Scholar 

  • Blanke SE, Johnsen AH, Rehfeld JF (1993) N-terminal fragments of intestinal cholecystokinin: evidence for release of CCK-8 by cleavage on the carboxyl side of Arg74 of proCCK. Regul Pept 46:575–582

    PubMed  CAS  Google Scholar 

  • Børglum T, Rehfeld JF, Drivsholm LB et al (2007) Processing-independent quantitation of chromogranin A in plasma from patients with neuroendocrine tumors and small-cell lung carcinomas. Clin Chem 53:438–446

    PubMed  Google Scholar 

  • Brand SJ, Andersen BN, Rehfeld JF (1984a) Complete tyrosine-O-sulphation of gastrin in neonatal rat pancreas. Nature 309:456–458

    PubMed  CAS  Google Scholar 

  • Brand SJ, Klarlund J, Schwartz TW et al (1984b) Biosynthesis of tyrosine O-sulfated gastrins in rat antral mucosa. J Biol Chem 259:13246–13252

    PubMed  CAS  Google Scholar 

  • Buhl T, Thim L, Kofod H et al (1988) Naturally occurring products of proglucagon 111–160 in the porcine and human small intestine. J Biol Chem 263:8621–8624

    PubMed  CAS  Google Scholar 

  • Bundgaard JR, Rehfeld JF (2008) Distinct linkage between post-translational processing and differential secretion of progastrin derivatives in endocrine cells. J Biol Chem 283:4014–4021

    PubMed  CAS  Google Scholar 

  • Bundgaard JR, Vuust J, Rehfeld JF (1995) Tyrosine O-sulfation promotes proteolytic processing of progastrin. EMBO J 14:3073–3079

    PubMed  CAS  Google Scholar 

  • Bundgaard JR, Vuust J, Rehfeld JF (1997) New consensus features for tyrosine O-sulfation determined by mutational analysis. J Biol Chem 272:21700–21705

    PubMed  CAS  Google Scholar 

  • Bundgaard JR, Birkedal H, Rehfeld JF (2004) Progastrin is directed to the regulated secretory pathway by synergistically acting basic and acidic motifs. J Biol Chem 279:5488–5493

    PubMed  CAS  Google Scholar 

  • Cain BM, Connolly K, Blum A et al (2003) Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2, and PC5 in rat brain. J Comp Neurol 467:307–325

    PubMed  CAS  Google Scholar 

  • Cantor P, Andersen BN, Rehfeld JF (1986) Complete tyrosine O-sulfation of gastrin in adult and neonatal cat pancreas. FEBS Lett. 195:272–274

    PubMed  CAS  Google Scholar 

  • Crawley JN (1985) Comparative distribution of cholecystokinin and other neuropeptides. Why is this peptide different from all other peptides? Ann NY Acad Sci 448:1–8

    PubMed  CAS  Google Scholar 

  • Dockray GJ, Gregory RA, Hutchison JB et al (1978) Isolation, structure and biological activity of two cholecystokinin octapeptides from sheep brain. Nature 274:711–713

    PubMed  CAS  Google Scholar 

  • Eberlein GA, Eysselein VE, Davis MT et al (1992) Patterns of prohormone processing. Order revealed by a new procholecystokinin-derived peptide. J Biol Chem 267:1517–1521

    PubMed  CAS  Google Scholar 

  • Eberlein GA, Eysselein VE, Goebell H (1988) Cholecystokinin-58 is the major molecular form in man, dog and cat but not in pig, beef and rat intestine. Peptides 9:993–998

    PubMed  CAS  Google Scholar 

  • Eipper BA, Stoffers DA, Mains RE (1992) The biosynthesis of neuropeptides: peptide alpha-amidation. Annu Rev Neurosci 15:57–85

    PubMed  CAS  Google Scholar 

  • Eng J, Du BH, Pan YC et al (1984) Purification and sequencing of a rat intestinal 22 amino acid C-terminal CCK fragment. Peptides 5:1203–1206

    PubMed  CAS  Google Scholar 

  • Friedman JM, Vitale M, Maimon J et al (1992) Expression of the cholecystokinin gene in pediatric tumors. Proc Natl Acad Sci USA 89:5819–5823

    PubMed  CAS  Google Scholar 

  • Furuta M, Yano H, Zhou A et al (1997) Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc Natl Acad Sci USA 94:6646–6651

    PubMed  CAS  Google Scholar 

  • Gelling RW, Du XQ, Dichmann DS et al (2003) Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA 100:1438–1443

    PubMed  CAS  Google Scholar 

  • Goetze JP, Kastrup J, Pedersen F et al (2002) Quantification of pro-B-type natriuretic peptide and its products in human plasma by use of an analysis independent of precursor processing. Clin Chem 48:1035–1042

    PubMed  CAS  Google Scholar 

  • Goetze JP, Hansen CP, Rehfeld JF (2006) Antral content, secretion and peripheral metabolism of N-terminal progastrin fragments. Regul Pept 133:47–53

    PubMed  CAS  Google Scholar 

  • Goltermann NR, Rehfeld JF, Roigaard-Petersen H (1980) In vivo biosynthesis of cholecystokinin in rat cerebral cortex. J Biol Chem 255:6181–6185

    PubMed  CAS  Google Scholar 

  • Gregory RA, Tracy HJ (1964) The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 5:103–114

    PubMed  CAS  Google Scholar 

  • Gregory H, Hardy PM, Jones DS et al (1964) The antral hormone gastrin. Structure of gastrin. Nature 204:931–933

    PubMed  CAS  Google Scholar 

  • Håkanson R, Alumets J, Rehfeld JF et al (1982) The life cycle of the gastrin granule. Cell Tissue Res 222:479–491

    PubMed  Google Scholar 

  • Hansen L, Hartmann B, Bisgaard T et al (2000) Somatostatin restrains the secretion of glucagon-like peptide-1 and -2 from isolated perfused porcine ileum. Am J Physiol Endocrinol Metab 278:E1010–E1018

    PubMed  CAS  Google Scholar 

  • Hartmann B, Johnsen AH, Orskov C et al (2000) Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides 21:73–80

    PubMed  CAS  Google Scholar 

  • Hilsted L, Rehfeld JF (1987) Alpha-carboxyamidation of antral progastrin. Relation to other post-translational modifications. J Biol Chem 262:16953–16957

    PubMed  CAS  Google Scholar 

  • Holst JJ, Orskov C, Nielsen OV et al (1987) Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett 211:169–174

    PubMed  CAS  Google Scholar 

  • Holst JJ, Bersani M, Johnsen AH et al (1994) Proglucagon processing in porcine and human pancreas. J Biol Chem 269:18827–18833

    PubMed  CAS  Google Scholar 

  • Jackson RS, Creemers JW, Farooqi IS et al (2003) Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest 112:1550–1560

    PubMed  CAS  Google Scholar 

  • Jensen S, Borch K, Hilsted L et al (1989) Progastrin processing during antral G-cell hypersecretion in humans. Gastroenterology 96:1063–1070

    PubMed  CAS  Google Scholar 

  • Jørgensen NR, Rehfeld JF, Bardram L et al (1998) Processing-independent analysis in the diagnosis of gastrinomas. Scand J Gastroenterol 33:379–385

    PubMed  Google Scholar 

  • Kieffer TJ, Habener JF (1999) The glucagon-like peptides. Endocr Rev 20:876–913

    PubMed  CAS  Google Scholar 

  • Kitabgi P (2006) Differential processing of proneurotensin/neuromedin N and relationship to prohormone convertases. Peptides 27:2508–2514

    PubMed  CAS  Google Scholar 

  • Kitabgi P (2009) Neurotensin and neuromedin N are differentially processed from a common precursor by prohormone convertases in tissues and cell lines. Results Probl Cell Differ. doi: 10.1007/400_2009_27

    Google Scholar 

  • Larsson LI (1980) Gastrointestinal cells producing endocrine, neurocrine and paracrine messengers. Clin Gastroenterol 9:485–516

    PubMed  CAS  Google Scholar 

  • Larsson LI, Rehfeld JF (1979a) A peptide resembling the C-terminal tetrapeptide amide of gastrin from a new gastrointestinal endocrine cell type. Nature 277:575–578

    PubMed  CAS  Google Scholar 

  • Larsson LI, Rehfeld JF (1979b) Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165:201–218

    PubMed  CAS  Google Scholar 

  • Larsson LI, Rehfeld JF (1981) Pituitary gastrins occur in corticotrophs and melanotrophs. Science 213:768–770

    PubMed  CAS  Google Scholar 

  • Larsson LI, Håkanson R, Rehfeld JF et al (1974) Occurrence and neonatal development of gastrin immunoreactivity in the digestive tract of the rat. Cell Tissue Res 149:275–281

    PubMed  CAS  Google Scholar 

  • Larsson LI, Rehfeld JF, Sundler F et al (1976) Pancreatic gastrin in foetal and neonatal rats. Nature 262:609–610

    PubMed  CAS  Google Scholar 

  • Leiter AB, Chey WY, Kopin AS (1994) Secretin. In: Walsh JH, Dockray GJ (eds) Gut peptides: biochemistry and physiology. Raven, New York, pp 147–173

    Google Scholar 

  • Lüttichau HR, van Solinge WW, Nielsen FC et al (1993) Developmental expression of the gastrin and cholecystokinin genes in rat colon. Gastroenterology 104:1092–1098

    PubMed  Google Scholar 

  • Mogensen NW, Hilsted L, Bardram L et al (1990) Procholecystokinin processing in rat cerebral cortex during development. Brain Res Dev Brain Res 54:81–86

    PubMed  CAS  Google Scholar 

  • Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619

    PubMed  CAS  Google Scholar 

  • Mojsov S, Kopczynski MG, Habener JF (1990) Both amidated and nonamidated forms of glucagon-like peptide I are synthesized in the rat intestine and the pancreas. J Biol Chem 265:8001–8008

    PubMed  CAS  Google Scholar 

  • Mutt V, Jorpes JE (1971) Hormonal polypeptides of the upper intestine. Biochem J 125:57P–58P

    PubMed  CAS  Google Scholar 

  • Müller L, Lindberg I (2000) The cell biology of the prohormone convertases PC1 and PC2. Prog Nucleic Acid Res Mol Biol 63:108

    Google Scholar 

  • Nielsen SJ, Rehfeld JF, Pedersen F et al (2005) Measurement of pro-C-type natriuretic peptide in plasma. Clin Chem 51:2173–2176

    PubMed  CAS  Google Scholar 

  • Orskov C, Holst JJ, Knuhtsen S et al (1986) Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119:1467–1475

    PubMed  CAS  Google Scholar 

  • Orskov C, Bersani M, Johnsen AH et al (1989) Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J Biol Chem 264:12826–12829

    PubMed  CAS  Google Scholar 

  • Orskov C, Wettergren A, Holst JJ (1993) Biological effects and metabolic rates of glucagonlike peptide-1 7–36 amide and glucagonlike peptide-1 7–37 in healthy subjects are indistinguishable. Diabetes 42:658–661

    PubMed  CAS  Google Scholar 

  • Orskov C, Rabenhoj L, Wettergren A et al (1994) Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 43:535–539

    PubMed  CAS  Google Scholar 

  • Paloheimo LI, Rehfeld JF (1994) A processing-independent assay for human procholecystokinin and its products. Clin Chim Acta 229:49–65

    PubMed  CAS  Google Scholar 

  • Persson H, Rehfeld JF, Ericsson A et al (1989) Transient expression of the cholecystokinin gene in male germ cells and accumulation of the peptide in the acrosomal granule: possible role of cholecystokinin in fertilization. Proc Natl Acad Sci USA 86:6166–6170

    PubMed  CAS  Google Scholar 

  • Reeve JR Jr, Eysselein VE, Walsh JH et al (1986) New molecular forms of cholecystokinin. Microsequence analysis of forms previously characterized by chromatographic methods. J Biol Chem 261:16392–16397

    PubMed  CAS  Google Scholar 

  • Rehfeld JF (1978a) Localisation of gastrins to neuro- and adenohypophysis. Nature 271:771–773

    PubMed  CAS  Google Scholar 

  • Rehfeld JF (1978b) Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem 253:4022–4030

    PubMed  CAS  Google Scholar 

  • Rehfeld JF (1986) Accumulation of nonamidated preprogastrin and preprocholecystokinin products in porcine pituitary corticotrophs. Evidence of post-translational control of cell differentiation. J Biol Chem 261:5841–5847

    PubMed  CAS  Google Scholar 

  • Rehfeld JF (1987) Preprocholecystokinin processing in the normal human anterior pituitary. Proc Natl Acad Sci USA 84:3019–3023

    PubMed  CAS  Google Scholar 

  • Rehfeld JF (1991) Progastrin and its products in the cerebellum. Neuropeptides 20:239–245

    PubMed  CAS  Google Scholar 

  • Rehfeld JF (1998a) Processing of precursors of gastroenteropancreatic hormones: diagnostic significance. J Mol Med 76:338–345

    PubMed  CAS  Google Scholar 

  • Rehfeld JF (1998b) The new biology of gastrointestinal hormones. Physiol Rev 78:1087–1108

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Goetze JP (2003) The posttranslational phase of gene expression: new possibilities in molecular diagnosis. Curr Mol Med 3:25–38

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Goetze JP (2006) Gastrin vaccination against gastrointestinal and pancreatic cancer. Scand J Gastroenterol 41:122–123

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Hansen HF (1986) Characterization of preprocholecystokinin products in the porcine cerebral cortex. Evidence of different processing pathways. J Biol Chem 261:5832–5840

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Johnsen AH (1994) Identification of gastrin component I as gastrin-71. The largest possible bioactive progastrin product. Eur J Biochem 223:765–773

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Larsson LI (1981) Pituitary gastrins. Different processing in corticotrophs and melanotrophs. J Biol Chem 256:10426–10429

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Lundberg JM (1983) Cholecystokinin in feline vagal and sciatic nerves: concentration, molecular form and transport velocity. Brain Res 275:341–347

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, van Solinge WW (1994) The tumor biology of gastrin and cholecystokinin. Adv Cancer Res 63:295–347

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Hansen HF, Larsson LI et al (1984) Gastrin and cholecystokinin in pituitary neurons. Proc Natl Acad Sci USA 81:1902–1905

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Bardram L, Hilsted L (1989) Gastrin in human bronchogenic carcinomas: constant expression but variable processing of progastrin. Cancer Res 49:2840–2843

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Johnsen AH, Odum L et al (1990) Non-sulphated cholecystokinin in human medullary thyroid carcinomas. J Endocrinol 124:501–506

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Mogensen NW, Bardram L et al (1992) Expression, but failing maturation of procholecystokinin in cerebellum. Brain Res 576:111–119

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Hansen CP, Johnsen AH (1995) Post-poly(Glu) cleavage and degradation modified by O-sulfated tyrosine: a novel post-translational processing mechanism. EMBO J 14:389–396

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Sun G, Christensen T et al (2001) The predominant cholecystokinin in human plasma and intestine is cholecystokinin-33. J Clin Endocrinol Metab 86:251–258

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Lindberg I, Friis-Hansen L (2002a) Progastrin processing differs in 7B2 and PC2 knockout animals: a role for 7B2 independent of action on PC2. FEBS Lett 510:89–93

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Lindberg I, Friis-Hansen L (2002b) Increased synthesis but decreased processing of neuronal proCCK in prohormone convertase 2 and 7B2 knockout animals. J Neurochem 83:1329–1337

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Bundgaard JR, Goetze JP et al (2004) Naming progastrin-derived peptides. Regul Pept 120:177–183

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Zhu X, Norrbom C et al (2008a) Prohormone convertases 1/3 and 2 together orchestrate the site-specific cleavages of progastrin to release gastrin-34 and gastrin-17. Biochem J 415:35–43

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Bundgaard JR, Hannibal J et al (2008b) The cell-specific pattern of cholecystokinin peptides in endocrine cells versus neurons is governed by the expression of prohormone convertases 1/3, 2, and 5/6. Endocrinology 149:1600–1608

    PubMed  CAS  Google Scholar 

  • Reubi JC, Koefoed P, Hansen TO et al (2004) Procholecystokinin as marker of human Ewing sarcomas. Clin Cancer Res 10:5523–5530

    PubMed  CAS  Google Scholar 

  • Rouille Y, Westermark G, Martin SK et al (1994) Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1–6 cells. Proc Natl Acad Sci USA 91:3242–3246

    PubMed  CAS  Google Scholar 

  • Rouille Y, Kantengwa S, Irminger JC et al (1997) Role of the prohormone convertase PC3 in the processing of proglucagon to glucagon-like peptide 1. J Biol Chem 272:32810–32816

    PubMed  CAS  Google Scholar 

  • Schalling M, Persson H, Pelto-Huikko M et al (1990) Expression and localization of gastrin messenger RNA and peptide in spermatogenic cells. J Clin Invest 86:660–669

    PubMed  CAS  Google Scholar 

  • Shively J, Reeve JR Jr, Eysselein VE et al (1987) CCK-5: sequence analysis of a small cholecystokinin from canine brain and intestine. Am J Physiol 252:G272–G275

    PubMed  CAS  Google Scholar 

  • Smith KA, Patel O, Lachal S et al (2006) Production, secretion and biological activity of the C-terminal flanking peptide of human progastrin. Gastroenterology 131:1463–1474

    PubMed  CAS  Google Scholar 

  • Steiner DF (1998) The proprotein convertases. Curr Opin Chem Biol 2:31–39

    PubMed  CAS  Google Scholar 

  • Stengaard-Pedersen K, Larsson LI, Fredens K et al (1984) Modulation of cholecystokinin concentrations in the rat hippocampus by chelation of heavy metals. Proc Natl Acad Sci USA 81:5876–5880

    PubMed  CAS  Google Scholar 

  • Ugleholdt R, Zhu X, Deacon CF et al (2004) Impaired intestinal proglucagon processing in mice lacking prohormone convertase 1. Endocrinology 145:1349–1355

    PubMed  CAS  Google Scholar 

  • Uvnäs-Wallensten K, Rehfeld JF, Larsson LI et al (1977) Heptadecapeptide gastrin in the vagal nerve. Proc Natl Acad Sci USA 74:5707–5710

    PubMed  Google Scholar 

  • van Solinge WW, Nielsen FC, Friis-Hansen L et al (1993a) Expression but incomplete maturation of progastrin in colorectal carcinomas. Gastroenterology 104:1099–1107

    PubMed  Google Scholar 

  • van Solinge WW, Ødum L, Rehfeld JF (1993b) Ovarian cancers express and process progastrin. Cancer Res 53:1823–1828

    PubMed  Google Scholar 

  • Watson SA, Grabowska AM, El-Zaatari M et al (2006) Gastrin - active participant or bystander in gastric carcinogenesis? Nat Rev Cancer 6:936–946

    PubMed  CAS  Google Scholar 

  • Wettergren A, Pridal L, Wøjdemann M et al (1998) Amidated and non-amidated glucagon-like peptide-1 (GLP-1): non-pancreatic effects (cephalic phase acid secretion) and stability in plasma in humans. Regul Pept 77:83–87

    PubMed  CAS  Google Scholar 

  • Wideman RD, Yu IL, Webber TD et al (2006) Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1 (GLP-1). Proc Natl Acad Sci USA 103:13468–13473

    PubMed  CAS  Google Scholar 

  • Zhu X, Zhou A, Dey A et al (2002) Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc Natl Acad Sci USA 99:10293–10298

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens F. Rehfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Rehfeld, J.F., Bundgaard, J.R. (2010). Cell-Specific Precursor Processing. In: Rehfeld, J., Bundgaard, J. (eds) Cellular Peptide Hormone Synthesis and Secretory Pathways. Results and Problems in Cell Differentiation, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2009_32

Download citation

Publish with us

Policies and ethics