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Abstract. This paper provides an overview of our joint work on graph-
matching. We commence by reviewing the literature which has moti-
vated this work. We then proceed to review our contributions under the
headings of 1) the probabilistic framework, 2) search and optimisation,
3) matrix methods, 4) segmentation and grouping, 5) learning and 6)
applications.

1 Introduction

For the past decade, we have been involved in a programme of activity aimed at
developing a probabilistic framework for graph matching. This paper provides
an overview of the main achievements of this programme of work. We commence,
with a review of the literature to set our own work in context. The achievements
are then summarised under the headings of 1) the probabilistic framework, 2)
search and optimisation, 3) matrix methods, 4) segmentation and grouping, 5)
learning and 6) applications. We conclude the paper by outlining our future
plans.

The work summarised here has been undertaken with a number of present
and former colleagues who have all made important contributions. These include
Andrew Finch, Andrew Cross, Benoit Huet, Richard Myers, Mark Williams,
Simon Moss, Bin Luo, Andrea Torsello, Marco Carcassoni and Antonio Robles-
Kelly.

2 Literature Review

We set our work in context with a brief review of the related literature. Some of
the pioneering work on graph matching was undertaken in the early 1970’s by
Barrow and Burstall [46] and by Fischler and Enschlager [55]. These two studies
provided proof of concept for the use of relational structures in high-level pic-
torial object recognition. Over the intervening three decades, there has been a
sustained research activity. Broadly speaking the work reported in the literature
can be divided into three areas. The first of these is concerned with defining a
measure of relational similarity. Much of the early work here was undertaken
in the structural pattern recognition literature. For instance, Shapiro and Har-
alick [64] showed how inexact structural representations could be compared by
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counting consistent subgraphs. This similarity measure was refined by Eshera
and Fu [53] and by Sanfeliu and Fu [61] who showed how the concept of string
edit distance could be extended to graphical structures. The formal basis of graph
edit distance has recently been extended by Bunke and his coworkers [418,49] who
have shown, among other things, that the edit distance is related to the size of
the maximum common subgraph. More recently Tirthapura, Sharvit, Klein and
Kimia have shown how the classical Levenshtein distance can be used to match
shock-graphs representing 2D skeletal shapes [69].

Much of the work described above adopts a heuristic or goal directed ap-
proach to measuring graph similarity. The second issue addressed in our liter-
ature survey is that of how to develop more principled statistical measures of
similarity. This endeavour involves the modelling of the processes of structural
error present in the graph-matching problem. Wong and You [72] made one of
the first contributions here by defining an entropy measure for structural graph-
matching. Boyer and Kak [17] also adopted an information theoretic approach,
but worked instead with attribute relations. Using a probabilistic relaxation
framework Christmas, Kittler and Petrou [50] have developed a statistical model
for pairwise attribute relations.

The third issue is that of optimisation. Here there have been several attempts
to use both continuous and discrete optimisation methods to locate optimal
graph matches. Turning our attention first to discrete optimisation methods,
there have been several attempts to apply techniques such as simulated anneal-
ing [56], genetic search [52] and tabu search [71] to the graph matching problem.
However, continuous optimisation methods provide attractive alternatives since
their fixed points and convergence properties are usually better understood than
their discrete counterparts. However, the main difficulty associated with map-
ping a discretely defined search problem onto a continuous optimisation method
is that of embedding. There are several ways in which this embedding can be
effected for the problem of graph matching. The most straightforward of these
is to pose the graph-matching problem as that of recovering a permutation ma-
trix which preserves edge or adjacency structure. For instance, Kosowsky and
Yuille have cast the problem into a statistical physics setting and have recov-
ered a continuous representation of the permutation matrix using mean-field
update equations [73]. Gold and Rangarajan [54] have exploited the stochastic
properties of Sinkhorn matrices to recover the matches using a soft-assign up-
date algorithm. Umeyama [70] takes a more conventional least-squares approach
and shows how an eigendecomposition method can be used to recover the per-
mutation matrix. An alternative representation has recently been developed by
Pelillo [60] which involves embedding the association graph. Matches are located
by using the replicator equations of evolutionary game-theory to locate the max-
imal clique of the association graph, i.e. the maximum common subgraph, of the
two graphs being matched. This method has subsequently also been applied to
shock-graph matching [74].

Closely related to this work on recovering permutation structure by continu-
ous embedding is the literature on spectral graph theory. This is a term applied
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to a family of techniques that aim to characterise the global structural properties
of graphs using the eigenvalues and eigenvectors of the adjacency matrix [51]. In
the computer vision literature there have been a number of attempts to use spec-
tral properties for graph-matching, object recognition and image segmentation.
Umeyama has an eigendecomposition method that matches graphs of the same
size [70]. Borrowing ideas from structural chemistry, Scott and Longuet-Higgins
were among the first to use spectral methods for correspondence analysis [62].
They showed how to recover correspondences via singular value decomposition
on the point association matrix between different images. In keeping more closely
with the spirit of spectral graph theory, yet seemingly unaware of the related lit-
erature, Shapiro and Brady [65] developed an extension of the Scott and Longuet-
Higgins method, in which point sets are matched by comparing the eigenvectors
of the point proximity matrix. Here the proximity matrix is constructed by com-
puting the Gaussian weighted distance between points. The eigen-vectors of the
proximity matrices can be viewed as the basis vectors of an orthogonal transfor-
mation on the original point identities. In other words, the components of the
eigenvectors represent mixing angles for the transformed points. Matching be-
tween different point-sets is effected by comparing the pattern of eigenvectors in
different images. Shapiro and Brady’s method can be viewed as operating in the
attribute domain rather than the structural domain. Horaud and Sossa[57] have
adopted a purely structural approach to the recognition of line-drawings. Their
representation is based on the immanental polynomials for the Laplacian matrix
of the line-connectivity graph. By comparing the coefficients of the polynomials,
they are able to index into a large data-base of line-drawings. In another applica-
tion involving indexing into large data-bases, Sengupta and Boyer[63] have used
property matrix spectra to characterise line-patterns. Various attribute represen-
tations are suggested and compared. Shokoufandeh, Dickinson and Siddiqi [67]
have shown how graphs can be encoded using local topological spectra for shape
recognition from large data-bases.

3 Probability Distributions

We embarked on our programme of work motivated by the need for a proba-
bilistic framework so that graph matching could be approached in a statistically
robust manner. At the time (1992), there were three pieces of work that ad-
dressed this problem. Wong and You [72], in early work in the structural pattern
recognition area had made one of the first attempts to cast the graph matching
problem into an information theoretic setting by defining the relative entropy of
two graphs. The second contribution came from Boyer and Kak [17], who cast
the problem of structural stereopsis into a mutual information setting, and by
choosing Gaussian distributions to measure the distribution of attributes, ar-
rived at a least squares framework for relational matching. In a more ambitious
piece of work, Christmas, Kittler and Petrou [75] showed how pairwise attribute
relations could be modelled probabilistically and used to match graphs using an
iterative probabilistic relaxation scheme. Taking a critical view of this existing
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work, we identified two areas where there appeared to be scope for improvement
and further work. First, the existing work in the area relied only on pairwise
relations. In other words, there had been little attempt to model constraints on
the graph matching problem beyond the edge-level. Second, there appeared to be
a move away from the use of purely structural constraints in favour of attribute
relations. Hence, we embarked on a programme of work aimed at modelling the
distribution of structural errors and using the distribution to develop robust
graph matching algorithms.

3.1 Edge and Face Compatibilities

Our initial study followed Christmas, Kittler and Petrou and persued the graph-
matching problem in the setting of probabilistic relaxation. Using the product-
form support function developed by Kittler and Hancock [76], we set about the
graph matching problem by attempting to model the compatibility co-efficients
for graph matching [5,9]. In the probabilistic framework, these take the form
of conditional probabilities. When the distribution of structural errors follows a
uniform distribution, then we discovered that the compatibilities followed a par-
ticularly simple and intuitively appealing distribution rule. In the case of edges
and triangular faces, the compatibilities were simply proportional to the edge
and face densities in the graphs being studied. Moreover, the entire compatibility
model was free of parameters.

3.2 Dictionaries

Encouraged by these findings, our next step was more ambitious. Here we aimed
to cast the graph-matching problem into a discrete relaxation setting [2]. Rather
than modelling structural corruption at the level of edge or face units, we aimed
to extend the model to entire edge-connected neighbourhoods of nodes. To do
this we adopted a dictionary model of structural errors [1,7]. This allowed for
neighbourhoods to match to one-another under a cyclic permutation of nodes
with possible dummy node insertions. Our structural model hence commenced
from a dictionary of possible mappings between each data-graph neighbourhood
and each permuted and padded neighbourhood of the model graph. With this
structural model to hand, the next step was to develop probability distributions
for the different types of error that can occur in graph matching by discrete
relaxation. Discrete relaxation is an iterative process which relies on replacing
symbolic label assignments so as to maximise a global consistency criterion [4].
Hence, at any iterative epoch there are two types of error that can occur. The
first of these are label placement of assignment errors. The second are structural
errors due to node and edge dropout or insertion. We commenced from a simple
distribution model in which these two error processes were modelled by uniform
and memoryless distributions. Based on these two assumptions, we arrived at a
probability distribution for the label configurations contained in the structural
dictionary. Again the model had a simple intuitive form. Each dictionary item
had a probability that took an exponential form. The exponential was a function
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of two variables. The first of these was the Hamming distance between the current
configuration of label placements and those demanded by the permutations in
the dictionary. The second variable was the size difference or number of padding
nodes needed. The distribution was controlled by two parameters. These are the
probability of label misplacement and the probability of dummy node insertion.
The former parameter was gradually reduced to zero (annealed) as the discrete
relaxation process iterated. The latter parameter was estimated from the size
difference of the graphs being matched.

3.3 Graph Editing

In addition to allowing graph-matching, the probabilistic framework also allows
us to rectify the effects of structural corruption. The aim here is to use maximum
a posteriori probability estimation to restore noise corrupted graphs. This is done
by developing statistical tests for the removal ands re-insertion of nodes, together
with their associated edges [11]. This method provides significant performance
advantages over other methods for dealing with structural error such as null-
labelling or locating maximal cliques of the association graph [4,7].

3.4 Edit Distance

One of the shortcomings of the method described above is that it requires the
enumeration of a dictionary of structures so that it may be applied to the graph-
matching problem. The number of dictionary items has a potentially exponential
complexity with the degree of the nodes in the graph when padding with dummy
insertions is allowed. To overcome this problem, we turned to string edit distance
or Levenshtein distance [77] as a means of computing the similarity of labelled
neighbourhoods. There had been previous attempts to extend the idea of edit
distance to graphs. The idea of doing this had already been explored by Es-
hera and Fu [53], and by Sanfeliu and Fu [61] in their early work on structural
matching. However, although effective the extension to graphs, lacks some of the
formal neatness of the string treatment. Hence, we adopted an approach in which
each neighbourhood is represented by a string, and the different permutations
are implicitly traversed in the edit matrix. In this way we lift the exponential
overhead on dictionary enumeration [21]. The location of the optimal string edit
path is computed using Dijkstra’s algorithm. Since, the Hamming distance of
the original probability distribution is a special case of the Levenshtein distance,
we again use a family of exponential distributions to model the probability of
match between neighbourhoods.

Recently, we have taken this work one step further. We make use of the re-
cent observation by Bunke [49] that the size of the maximum common subgraph
and the edit distance are related to one another. Hence, by locating the max-
imum common subgraph, we may estimate edit distance. The recent work of
Pelillo [60] provides a means of locating the max-clique using a quadratic pro-
gramming method. We have made use of this result to efficiently compute tree
edit distance [37].
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4 Search and Optimisation

Once a measure of graph similarity is to hand, then a means of locating the
matching configuration of maximum similarity is one of configurational optimi-
sation. In our initial experiments with the methods described in the previous
section we used simple hill-climbing methods. These are prone to convergence
to local optima. Hence, an important theme in our work has been to explore the
use of global optimisation methods for graph matching.

4.1 Genetic Search

The simplest way to overcome local convergence problems is to adopt a stochas-
tic optimisation framework. There are a number of well known techniques here,
including the extensively studied process of simulated annealing. However, ge-
netic search offers a topical method which has furnished us with an effective
route to graph matching.

Evolutionary or genetic search is a population-based stochastic optimisation
process which draws is inspiration from population genetics. The process relies
on three different operations to modify a population of possible solutions to dis-
cretely defined problems which have been encoded in a string of symbols which
resemble the arrangement of genes on a chromosome. Mutation is a background
operator which randomly switches individual symbols. Crossover or recombina-
tion, exchanges randomly selected subparts of pairs of strings residing in the
population to produce new ones. Finally, selection uses a fitness measure for the
solutions candidates which can be retained in the population. In a series of pa-
pers [8,12,22.24.26,28] we have investigated how genetic search can be tailored
to our probabilistic framework for graph-matching. The reason for doing this is
that there are several features of our formulation that have an natural assonance
with genetic search. The first of these is that we have a probabilistic measure of
graph similarity, which naturally plays the role of a fitness function [8]. Second,
the development of this model relies on the specification of the assignment er-
ror probability. This probability can be used to control the re-assignment of the
labels to nodes via mutation operator. However, despite these appealing concep-
tual isomorphisms, there are a number of more difficult problems to be solved
in mapping the graph-matching problem onto a genetic search procedure. The
most obvious of these is that GA’s usually rely on a string encoding, and a graph
is a relational structure. Although the encoding issue is not one of major impor-
tance, the main difficultly arises when considering how to implement crossover
since we no longer have the convenience of strings. To overcome this problem we
have developed a graph-based crossover mechanism. This involves performing a
graph-cuts and recombining the two subgraphs so formed. Normally, this would
be rather intractable since we would have to produce cuts in different graphs
which traversed the same number of edges so that the subgraphs could be re-
combined. We circumvent this problem by working with the Delauney graphs of
point-sets. Here we bisect planar point-sets with a straight line and recombine
the point-sets at the cut line. The recombined point-sets can be re-triangulated
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to produce new Delaunay graphs. Structural errors may be corrected by deleting
and re-inserting points in the recombination step. We have performed both the-
oretical and empirical analysis on the resulting graph-matching process. First,
we have established the convergence properties of the resulting algorithm using
a Gaussian model of the distribution of population fitness. Second, we have em-
barked on an exhaustive investigation of the best choice of mutation, crossover,
and selection operators for use in conjunction with the graph-matching prob-
lem. Finally, we have exploited the population architecture of the optimisation
process to develop a least commitment graph-matching method which allows
multiple ambiguous solutions to be maintained.

4.2 Softened Representations

One way to escape local optima in discretely defined optimisation problems
such as graph matching, consistent labelling and constraint satisfaction is to
soften the representation. In other words, the aim is to replace the symbolic
labels by real-valued assignment variables or by label probabilities. Probabilistic
relaxation is such a scheme, but it only posses local convergence properties. A
method which posses global convergence properties is mean field annealing. The
have been several attempts to cast the graph-matching problem into a mean
field setting. These include the early work of Simic [68] and Suganathan [78].
The idea here is to locate an energy function for the assignment or mean field
variables through a process of local averaging over the configuration space of
the matching problem. The mean field variables are updated by exponentiating
the derivatives of the energy function. As the process proceeds, the constant
of the exponentials is annealed, so as to increasingly penalise departures from
consistency. These methods are also closely akin to the soft-assign method of
Gold and Rangarajan [54].

However, these early mean-field methods are often referred to as “naive” since
they commence from an ad hoc energy function rather than a principled prob-
ability distribution. More recently, the apparatus of variational inference have
been deployed to develop mean field equations [58,79]. The idea here is to find the
set of mean field variables which have minimum Kullback divergence to a prior
distribution for the discrete entities for the problem in hand. We have adopted
this approach to develop soft assign equations for graph matching [11,13]. Our
approach is midway between the naive one and the full variational treatment.
The reason for the compromise is, of course, that of tractability. Rather than
using the variational approach to find minimum Kullback divergence update
equations for the assignment variables, we use it to find an equivalent free en-
ergy for the dictionary-based probability distribution. This energy is couched in
terms of assignment variables. We follow Gold and Rangarajan [54] and update
the assignment variables by exponentiating the derivatives of the free energy.
The result is a non-quadratic energy function which proves more robust than its
quadratic counterpart.
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4.3 Tabu Search

In addition to stochastic and mean-field methods for optimisation methods there
are also deterministic methods which can yield good results for the graph-
matching problem. Recently, tabu search has been used with great effect for
a number of path-based planning and scheduling problems. The method uses
an aspiration criterion to intensify and diversify the search procedure. We have
used this search procedure with our probabilistic similarity measure to perform
a deterministic brushfire search for graph matches [6,17]. We commence from the
most confident matches and propagate the search for matches across the edges
of the graph to adjacent nodes. This method provides a search procedure which
is both efficient and effective.

5 Matrix Methods

One of the disappointments of the early matrix-based methods for graph-
matching is that while they are extremely elegant, they can not cope with graphs
of different size and are not robust to structural error. For this reason we have
recently attempted to extend our probabilistic framework for graph-matching to
the matrix domain. Our aim here has been to combine probabilistic methods
with ideas from spectral graph theory [51].

5.1 Singular Value Decomposition

The method of Umeyama attempts to match graphs by comparing the singular
vectors of the adjacency matrix. One of the problems which limits this method
is that there is no clear way to compare the singular vectors of matrices of
different size. To overcome this problem, we have recently presented a study
which aims to cast the Umeyama [70] algorithm into the setting of the EM
algorithm. Commencing from a simple model for the correspondence process
in which assignment errors follow a Bernoulli distribution, we have developed
a mixture model for graph-matching [27]. This leads to a utility measure for
the graph-matching problem which is obtained from the trace of the weighted
correlation of the adjacency matrices for the two graphs being matched. The
weight matrix allows for both correspondence errors and difference in the size of
the two adjacency matrices.

We find optimal matches in a two-step iterative EM algorithm. In the M or
maximisation step, the optimal matches are found by performing singular value
decomposition on the weighted adjacency correlation matrix. In the E-step, the
weight matrix used to perform adjacency matrix correlation is updated.

5.2 Adjacency Matrix Markov Chains

Spectral methods hold out another promising route to graph-matching. It is
well known that the leading eigenvector of the transition probability matrix for
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a Markov chain is the steady state random walk on the graphical model of the
Markov chain. Viewed slightly differently, if we commence with the adjacency
matrix for a graph and convert it into a transition probability matrix using row
and column normalisation, then the leading eigenvector provides us with a string
representation of the graph. By converting graphs into strings in this way, then
graph-matching can be effected using string-matching methods. With this goal
in mind, we have recently reported a method which aims to match graphs using
the Levenshtein distance between steady state random walks [13].

6 Segmentation and Grouping

To apply the matching methods listed above, which are entirely generic in nature,
we require graph structures to be segmented from image data. The ideas of error
modelling and graph editing also provide theoretical tools which can be used to
develop segmentation and grouping algorithms.

6.1 Regions and Arrangements

The idea of using a Bernoulli distribution to model structural errors also has
applications to the pairwise grouping of image entities. To do this we have used
the Bernoulli distribution to model the distribution of edge weights or grouping
strength between image tokens [35,36,42]. These may be viewed as the elements
of a weighted adjacency matrix. We have developed a simple EM algorithm
based on this Bernoulli model, which encourages blocks to form in the permuted
adjacency matrix. This algorithm uses the eigenvectors of the adjacency ma-
trix to update the connectivity weights, and shares much in common with the
normalised cuts method of Shi and Malik [66].

6.2 Meshes and Surfaces

The explicit graph edit operations used to correct structural errors in the graph-
matching process can also be used to modify relational structures so as to im-
prove their consistency with raw image data. One application in which this arises
is the control of surface meshes. Here the aim is to have a fine mesh in the prox-
imity of high curvature surface detail, and a coarse grained mesh in the proximity
of relatively unstructured surface regions. We have developed an adaptive sur-
face mesh which uses split and merge operations to control the placement of
mesh facets so as to optimise a bias-variance criterion [23]. Here facets may be
added or subtracted so that they minimise the sum of variance and squared bias.
In this way we achieve good data-closeness while avoiding over fitting with too
many mesh facets.
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7 Learning

Our probabilistic framework has provided us with a means of measuring the
similarity of graphs. With good similarity measures to hand, then we can address
a number of problems that involve learning from structural representations.

7.1 Graph Clustering

The simplest task that arises in machine learning with structural representations
is how to cluster similar graphs together. This problem is more complicated than
that of using feature or pattern vectors, since it is notoriously difficult to define
the mean and covariance of a set of graphs. Hence, central clustering methods
can not easiliy be used to learn classes of graphs. However, there are several
methods which allow data to be clustered using pairwise or relational attributes
rather than ordinal ones. Two such methods are multidimensional scaling and
pairwise clustering. We have recently applied both methods to the clustering
of shock-tress using edit distances between pairs of graphs [38,44]. The results
prove promising and indicate that shape classes can be learnt from structural
representations.

7.2 Structural Variations

One of the shortcoming of simply using a pattern of distances, it that it does not
capture the variations in detailed structure associated with a particular class of
graph-structure. In a recent study we have turned to spectral graph theory to
furnish us with a representation suitable for this purpose. One of the problems
with computing the mean and variance of a set of graphs is that they may po-
tentially contain different numbers of node and edges, and even if the structures
are the same then correspondences between nodes are required. To overcome
this problem we have use the leading eigenvectors of the adjacency matrices
of sets of graphs to define fuzzy clusters of nodes. From the fuzzy clusters, we
compute features including volume, perimeters and Cheeger constants. By or-
dering the clusters according to the magnitude of the associated eigenvalue, we
construct feature-vectors of fixed length. ;From these vectors it is possible to
construct eigenspaces which trace out the main modes of structural variation in
the graphs [15].

8 Applications

The research described in the previous sections is of a predominantly method-
ological and theoretical nature. However, we have applied the resulting tech-
niques to a large variety of real world problems. In this section we summarise
these.
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8.1 Model Alignment

Graph-matching provides correspondences between image entities. The entities
may be points, lines, regions or surfaces depending on the abstraction adopted.
However, once correspondence information is to hand then it may be used for the
purposes of detailed model alignment. We have explored a number of different
approaches to using the correspondence information delivered by our graph-
matching methods for model alignment.

Rigid Models The first class of alignment process are those which involve rigid
transformations. The rigid geometries most frequently used in computer vision
are the similarity, affine and perspective transformations. To exploit our prob-
abilistic framework for measuring the consistency of graph correspondences, we
have developed a novel dual-step EM algorithm [14,18]. Here we work with a
mixture model over the space of correspondences. The aim is estimate the pa-
rameters of any the three rigid transformations that bring noisy point sets of
potentially different size into correspondence with one another. If this is done us-
ing the EM algorithm then the aim is to find the set of parameters that optimise
an expected log likelihood function. If the alignment errors between the differ-
ent point sets follow a Gaussian distribution then the expected log-likelihood
is a weighted squared error function, where the weights are the a posteriori
alignment probabilities. Starting from first principles, we have shown how the
correspondence probabilities delivered by our dictionary-based structural error
model can be used to impose additional constraints on the alignment process.
This takes the form of an additional weighting of the contributions to the ex-
pected log-likelihood function. We develop a dual step EM algorithm which
interleaves the tasks of finding point correspondences and estimating alignment
parameters. The method has been applied to recovering plane perspective pose.
We have also shown how the method relates to the Procrustes alignment process
for point-sets subject to similarity transformations [31].

Non-rigid Models For non-rigid alignment we have adopted a slightly different
approach. Here we have posed the alignment and correspondence problems in a
setting which involves maximising the cross entropy between the probability dis-
tributions for alignment and correspondence errors [59]. We have applied the re-
sulting matching process to the problem of aligning unlabelled point distribution
models to medical image sequences. In this way we are able to impose relational
constraints on the arrangement of landmark points, and improve the robustness
of the matching process to both measurement and structural errors [30,11].

8.2 Object Recognition

Another important application of the graph matching methods is to object recog-
nition, and in particular that of recognising an object from a large number of
image instances. This problem is one of practical significance since it arises in
the retrieval of images from large data-bases.
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Line-Patterns The main application vehicle for the object recognition has been
the retrieval of trade marks abstracted in terms of line pattern arrangements.
Here we have used a coarse to fine search procedure. We commence with a repre-
sentation of the line patterns based on a so-called relational histogram. This is a
histogram of affine invariant relative angle and length ratio attributes. However,
only those pairs of lines that are connected by a line-centre adjacency graph
can contribute to the histogram [20]. The next step is to refine the candidate
matches using a set-based representation of the edge attributes. Here we use
a robust variant of the Hausdorf distance to find the closest matching sets of
attributes [29]. Finally, the pruned set of matches is searched for the best match
using a full graph-based matching scheme [19].

Surface Topography The framework described above can be extended from
line patterns to surface patches. One of our complementary interests is in the
process of shape-from-shading [15]. This is concerned with recovering surface
patches from local shading variations. We have shown how the robust Hauss-
dorff distance can be used to recognise 3D objects from 2D views using the
arrangement surface patches together with their shape-index attributes [25].

View-Based Object Recognition The final application studied has been view
based object recognition. Here the aim is to a large number of views of a 3D
object as the viewpoint is slowly varied.

9 The Future

One of the main challenges facing the structural pattern recognition community
is that of developing methods for shape modelling that are comparable in per-
formance and versatility to those developed by the computer vision community.
Here eigenspace methods have proved powerful for both modelling variations
in boundary shape and appearance attributes. Although the vision community
have recently been pre-occupied with the use of geometric methods, the recent
use of shock-graphs have increased their confidence and curiosity in the use of
structural methods. However, while recent work has demonstrated the utility
of graph-based methods for matching and recognition, it is fair to say that the
available methodology for learning structural descriptions is limited. In many
ways the graphical models community has much from which we can learn. They
have developed principled information theoretic methods for learning the struc-
ture of both Bayes nets and other graphical structures such as decision trees. It
must be stressed that these are inference structures rather than relational mod-
els. Hence, they are rather different from the relational structures encountered
in image analysis and computer vision which are predominantly concerned with
the representation of spatially organised data. What we do have to offer is a
methodology for measuring the similarity of relational structures at a relatively
fine-grained level. Moreover, if spectral techniques can be further tamed then
there is scope for considerable convergence of methodology.
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