Skip to main content

Molecular Transitions and Dynamics at Polymer / Wall Interfaces: Origins of Flow Instabilities and Wall Slip

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 138))

Abstract

This article reviews recent results on capillary melt flow anomalies. Long standing controversies and debates in this field are illustrated by summarizing previous results and clarified with an extensive discussion of the most recent results. Explicit molecular mechanisms for flow instabilities are presented in contrast to a background of 40 years’ continuous and far ranging research. New experiments show that the widely observed extrusion anomalies (including oscillating flow, discontinuous flow transition and sharkskin) of linear polyethylenes (LPE) originate from interfacial molecular transitions, which may or may not be stable depending the specific flow conditions. A global flow instability (commonly known as oscillating capillary flow) evidently arises from a time-dependent oscillation of the global hydrodynamic boundary condition (HBC) between no-slip and slip limits at the capillary die wall. Other convincing observations show that sharkskin originates from a local instability of HBC at the die exit wall. The global and local interfacial instabilities both originate from a reversible coil-stretch transition involving interfacial unbound chains that are entangled with the adsorbed chains. In other words, local and global stress oscillations result in the observed macroscopic sharkskin-like and bamboo-like extrudate distortions respectively. A second molecular mechanism for wall slip is also clearly identified, involving stress-induced chain desorption off low surface energy walls. An organic coating of capillary die walls produces massive chain desorption and a large magnitude wall slip at rather low stresses, whereas bare metallic and inorganic surfaces (e.g., steel, aluminum, and glass) usually retain sufficient chain adsorption and prevent catastrophic slip up to the critical stress for the coil-stretch transition. The intricate interfacial flow instabilities exhibited by LPE are also shared by other highly entangled melts such as polybutadienes. In contrast, monodisperse melts with high critical entanglement molecular weight (M e ) such as polystyrene of M w =106 show massive wall slip on low energy surfaces but no measurable interfacial stick-slip transition before reaching the plateau around 0.2 MPa. Tasks for future work include (i) direct molecular probe of melt chain adsorption and desorption processes at a melt/wall interface as a function of the surface condition, (ii) new theoretical studies of chain dynamics in an entangling melt/wall interfacial region as well as in bulk at high stresses, (iii) test of universality of the established physical laws governing melt/wall interfacial behavior and flow for all polymers, and (iv) development of tractable experimental and theoretical methods to study boundary discontinuities and stress singularities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Gennes (1987) Adv Colloid & Interface Sci 27:1892

    Google Scholar 

  2. Lee J-J, Fuller GG (1985) J Colloid & Interface Sci 103:569

    Article  CAS  Google Scholar 

  3. Frantz P, Granick S (1991) Phys Rev Lett 66: 899; Granick S, Johnson HE (1992) Science 255:966

    Article  CAS  Google Scholar 

  4. Balazs A, Gempe MC, Zhou Z (1991) Macromolecules 24:4918

    Article  CAS  Google Scholar 

  5. Dijt JC, Cohen Stuart MA, Fleer GJ (1994) Macromolecules 27:3229

    Article  CAS  Google Scholar 

  6. Halperin A, Tirrell MV, Lodge TP ( 1992) Adv Polym Sci 100:31

    Article  CAS  Google Scholar 

  7. Zheng X, Sauer BB, Vanalsten JG, Scharwz SA, Rafailovich MH, Sokolov J, Rubinstein M (1995) Phys Rev Lett 74:407; Forrest JA, Dalnoki-Veress K, Stevens JR, Dutcher JR (1996) Phys Rev Lett 77:2002

    Article  CAS  Google Scholar 

  8. Cohen-Addad J-P, Huchot P, Jost P, Pouchelon A ( 1989) Polymer 30:143

    Article  CAS  Google Scholar 

  9. Tordella JP (1956) J Appl Phys 27:454

    Article  CAS  Google Scholar 

  10. Tordella JP (1963) J Appl Polym Sci 7:215

    Article  CAS  Google Scholar 

  11. Tordella JP (1969) In: Rheology, Vol. 5, Eirich FR, Ed, Academic Press: New York, p57

    Google Scholar 

  12. Petrie CJS, Denn MM (1976) AIChE J 22:209

    Article  CAS  Google Scholar 

  13. Denn MM (1990) Ann Rev Fluid Mech 22:13

    Article  Google Scholar 

  14. Denn MM (1992) In: Moldenaers P, Keunings R (eds) Theoretical and Applied Rheology (Proc XIth Intl Congress on Rheology), Vol. 1, Elsevier, London, pp 45–49. See also Boudreaux E, Cuculo JA (1978) J Macromol Sci C16:39

    Google Scholar 

  15. Kalika DS, Denn MM (1987) J Rheol 31:815

    Article  CAS  Google Scholar 

  16. Bagley EB, Cabott IM, West DC (1958) J Appl Phys 29:109

    Article  Google Scholar 

  17. Larson RG (1992) Rheol Acta 31:213

    Article  CAS  Google Scholar 

  18. Navier M (1823) Mémo Acad Royal Sci Inst France 6:4 14. This reference originates from citation by S. Goldstein in [17] below

    Google Scholar 

  19. Stokes GG (1845) Trans Cam Phil Soc 8:299

    Google Scholar 

  20. Goldstein S (1938) Modern developments in fluid dynamics, vol 2. Oxford Univ Press, London, pp 676–680

    Google Scholar 

  21. Schowalter WR (1988) J Non-Newtonian Fluid Mech 29:25

    Article  CAS  Google Scholar 

  22. Burton RH, Folkes MJ, Narh KA, Keller A (1983) J Mater Sci 18:315

    Article  CAS  Google Scholar 

  23. Kissi NEL, Piau JM ( 1990) J Non-Newtonian Fluid Mech 37:55

    Article  Google Scholar 

  24. Larson RG, Patel S Chen Y (1994) Rheol Acta 33:243

    Article  Google Scholar 

  25. Kissi NEL, Léger L, Piau JM, Mezghani, A ( 1994) J Non-Newtonian Fluid Mech 52:249

    Article  Google Scholar 

  26. Tritton DJ (1977) Physical Fluid Dynamics. Van Nostrand Reinhold, UK, p 54

    Google Scholar 

  27. (a)_Lamb H ( 1932) Hydrodynamics, pp 576 and 586, 6th edn. Dover, New York; 24. (b)_Basset AB (1888) A treatise on hydrodynamics. Deighton, Bell and Co., Cambridge

    Google Scholar 

  28. De Gennes PG (1979) C R Acad Sci 288B:219

    Google Scholar 

  29. Wang SQ, Drda PA (1996) Macromolecules 29:4115

    Article  CAS  Google Scholar 

  30. Wang SQ, Drda PA (1997) Rheol Acta 36:128

    CAS  Google Scholar 

  31. Wang SQ, Drda PA (1996) Macromolecules 29:2627

    Article  CAS  Google Scholar 

  32. Brochard F, De Gennes PG (1992) Langmuir 8:3033

    Article  CAS  Google Scholar 

  33. Bergem N ( 1976) Proc 7th Intl Congr Rheol, Swedish Soc Rheol, p 50

    Google Scholar 

  34. Blyler LL, Hart AC (1970) Polym Sci Eng 10:193

    Article  CAS  Google Scholar 

  35. Henson DJ, Mackay ME (1995) J Rheol 39:359

    Article  CAS  Google Scholar 

  36. Cogswell FN (1977) J Non-Newtonian Fluid Mech 2:37

    Article  CAS  Google Scholar 

  37. Lipscomb GG, Keunings R, Denn MM J Non-Netwonian Fluid Mech (1987) 24:85

    Google Scholar 

  38. Huh C, Scriven LE (1971) J Colloid & Interface Sci 35:85

    Article  CAS  Google Scholar 

  39. Silliman WJ, Scriven LE (1978) Phys Fluids 21:2115

    Article  Google Scholar 

  40. Silliman WJ, Scriven LE (1980) J Comput Phys34:287

    Article  CAS  Google Scholar 

  41. Kistler SF, Scriven LE (1983) Peason JRA, Richardson SM (eds) Computational analysis of polymer processing. Appl Sci Publisher, London, p243

    Google Scholar 

  42. Hatzikiriakos SG, Dealy JM (1991) J Rheol 35:497

    Article  CAS  Google Scholar 

  43. Migler KB, Hervet H, Leger L (1993) Phys Rev Lett 70:287; MiglerKB, Massey G, Hervet H, Leger L (1994) J Phys-Conden Matt 6:A301

    Article  CAS  Google Scholar 

  44. Laun HM (1982) Rheol Acta 21:464

    Article  Google Scholar 

  45. Macosko CW, Morse DJ (1976) Kalson C, Kubat J (eds) Proceedings of Seventh International Congress on Rheology, Gothenburg, p376

    Google Scholar 

  46. Adrian DW, Giacomin AJ (1992) J Rheol 36:1227; Adrian DW, Giacomin AJ (1994) J. Eng Mater Tech 116:446

    Article  CAS  Google Scholar 

  47. Inn YW, Wang SQ (1994) Rheol Acta 33:108 The observed stress decay at high stresses and slow recovery at lower stresses in PDMS suspensions of glass spheres was thought to arise from interfacial slip and to be controlled by “glassy” chain dynamics. This interpretation turned out to be completely wrong. See ref. [47].

    Article  Google Scholar 

  48. Hatzikiriakos SG, Kalogerakis N ( 1994) Rheol Acta 33:38

    Article  CAS  Google Scholar 

  49. Graham MD (1995) J Rheol 39:697

    Article  CAS  Google Scholar 

  50. Black WB, Graham MD (1996) Phys Rev Lett 77:956

    Article  CAS  Google Scholar 

  51. Shore JD, Ronis D, Piche L, Grant M (1996) Phys Rev Lett 77:655

    Article  CAS  Google Scholar 

  52. Petit L, Noetinger B (1988) Rheol Acta 27:437

    Article  CAS  Google Scholar 

  53. Wang SQ, Inn YW (1995) Polym Intl 37:153

    Article  CAS  Google Scholar 

  54. Inn YW, Wang SQ (1996) Phys Rev Lett 76:467

    Article  CAS  Google Scholar 

  55. Kraynik AM, Schowalter WR (1981) J Rheol 25:95

    Article  CAS  Google Scholar 

  56. Atwood BT, Schowalter WR (1989) Rheol Acta 28:134

    Article  CAS  Google Scholar 

  57. Lim FJ, Schowalter WR (1989) J Rheol 33:1359

    Article  CAS  Google Scholar 

  58. Piau JM, Kissi NEl, Tremblay B (1990) J Non-Newtonian Fluid Mech 34:145

    Article  CAS  Google Scholar 

  59. Hill DA, Hasegawa T, Denn M (1990) J Rheol 34:891

    Article  Google Scholar 

  60. Hatzikiriakos SG, Dealy JM (1992) J Rheol 36:703

    Article  CAS  Google Scholar 

  61. Hatzikiriakos SG, Dealy JM (1992) J Rheol 36:845

    Article  CAS  Google Scholar 

  62. Piau JM, Kissi NEl, Tremblay B (1994) J Non-Newtonian Fluid Mech 54:121

    Article  CAS  Google Scholar 

  63. Wang SQ, Drda P (1997) Macromol Chem & Phys 198:673

    Article  CAS  Google Scholar 

  64. Ui J, Ishimari Y, Morakami H, Fukushma N, Mori Y ( 1964) SPE Soc Plastics Engr Trans 4:295

    CAS  Google Scholar 

  65. Uhland E (1979) Rheol Acta 18:1

    Article  CAS  Google Scholar 

  66. Sabia R (1962) J Appl Polym Sci 6:S42

    Article  CAS  Google Scholar 

  67. Vinogradov GV (1972) J Polym Sci Part A-2 10:1061

    Article  CAS  Google Scholar 

  68. Vinogradov GV, Malkin AY (1980) Rheology of polymers-viscoelasticity and flow of polymers. Springer, Berlin Heidelberg New York

    Google Scholar 

  69. Vinogradov GV, Protasov VP, Dreval VE (1984) Rheol Acta 23:46

    Article  CAS  Google Scholar 

  70. Yang XP, Wang SQ (1998) Rheol Acta, in press.

    Google Scholar 

  71. Lupton JM, Regester JW (1965) Polym Sci Eng 5:235

    Article  CAS  Google Scholar 

  72. Pearson JRA (1985) Mechanics of polymer processing. Elsevier, London

    Google Scholar 

  73. Lin YH (1985) J Rheol 29:506

    Google Scholar 

  74. Huseby TW (1966) Trans Soc Rheol 10:181 Similar theoretical studies have been made more recently by Malkus and coworkers

    Article  CAS  Google Scholar 

  75. McLeish TCB, Ball RC (1986) J Polym Sci B24:1735

    Article  CAS  Google Scholar 

  76. McLeish, TCB (1986) J Polymc Sci B25:2253

    Article  Google Scholar 

  77. Metzger AP, Hamilton CW (1964) SPE Trans 4:107. The authors did not observe a flow instability in a Teflon capillary. However, they were not so sure whether the Teflon capillary retained its original shape and dimensions at 190° C and high stresses. Consequently a glass-reinforced Teflon capillary die was employed and found to restore the flow instability (i.e., oscillation), thus casting “doubt on the assumed slip mechanism.” It is clear to us today that the glass fillers exposed on the die wall may provide sufficient adsorption sites for polyethylene chains, thus restoring the source of the flow oscillation. To our knowledge, this is one of the few early in the scientific literature that studied the surface effect on melt flow instabilities although its conclusion might be misleading

    Article  CAS  Google Scholar 

  78. Wang SQ, Drda PA, Inn YW (1996) J Rheol 40:875; Barone JR, Plucktaveesak N, Wang SQ (1998) J Rheol 42:813.

    Article  CAS  Google Scholar 

  79. Kolnaar, JWH, Keller A (1994) Polymer 35:3863; Kolnaar, JWH, Keller A (1995) Polymer 36:821; Kolnaar, JWH, Keller A (1997) Polymer 38:1817

    Article  CAS  Google Scholar 

  80. Mooney M (1931) Trans Soc Rheol 2:210. It was evident even at the time of Navier that the meaningful way to quantify any level of wall slip is to express it in terms of the extrapolation length b [24]. Equation (4a) clearly shows that any correction would enter as the ratio of b to a characteristic dimension of the flow apparatus, e.g., the diameter D of capillary dies. It is unfortunate that Mooney abandoned the notion of the extra polation length b in favor of the slip velocity vs

    Article  CAS  Google Scholar 

  81. Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Macromolecules 27:4639

    Article  CAS  Google Scholar 

  82. De Gennes PG (1996) Private Communication; Brochard-Wyart F, de Gennes PG (1993) C.R. Acad. Sci. Paris t. 317 Série II:13; Ajdari A (1993) C.R. Acad. Sci. Paris t. 317 Série II:1159

    Google Scholar 

  83. Drda P and Wang SQ (1995) Phys Rev Lett 75:2698

    Article  CAS  Google Scholar 

  84. White J (1973) United State-Japan Seminar on Polymer Processing and Rheology. Bogue DC, Yamamoto M, White JL (eds) Wiley, New York, p155

    Google Scholar 

  85. Tordella J (1957) Trans Soc Rheol 1:203

    Article  CAS  Google Scholar 

  86. Bagley EB, Birks AM (1960) J Appl Polym Sci 31:556

    Google Scholar 

  87. Ramamurthy AV (1986) J Rheol 30:337

    Article  CAS  Google Scholar 

  88. Beaufils P, Vergnes B, Agassant JF (1989) Interntl Polym Processing IV:78

    Google Scholar 

  89. Kurtz SJ (1984) Advances in Rheology (Proc IX Intl Congr Rheol) Mena B, Garcia-Rejon A, Rangel Nafaile C (eds) vol 3,p 339

    Google Scholar 

  90. Kurtz SJ (1991) 7th Annual Meeting of Polym Proc Soc, Hamilton, Canada, p 54

    Google Scholar 

  91. Kurtz SJ (1992) Theoretical and Applied Rheology (Proc XIth Intl Congr Rheol), vol 1, Moldenaers P, Keunings R (eds), Elsevier, London, p377

    Google Scholar 

  92. Moynihan RH, Baird DG, Ramanathan R (1990) J Non-Newtonian Fluid Mech 36:255

    Article  CAS  Google Scholar 

  93. Sornberger G, Quantin JC, Fajolle R, Vergens B, Agassant JF ( 1987) J Non-Newtonian Fluid Mech 23:123

    Article  CAS  Google Scholar 

  94. Tanner RI (1985) Engineering Rheology, Clarendon, Oxford

    Google Scholar 

  95. Pearson JRA, Petrie CJS (1968) Whorlow RW (ed) Polymer systems: deformation and flow. Macmillan, New York, p163

    Google Scholar 

  96. Bagley EB, Schreiber HP (1961) Trans Soc Rheol 5:341

    Article  Google Scholar 

  97. Meijer HEH (1997) Private communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S. Granick K. Binder P.-G. de Gennes E. P. Giannelis G. S. Grest H. Hervet R. Krishnamoorti L. Léger E. Manias E. Raphaël S.-Q. Wang

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, SQ. (1999). Molecular Transitions and Dynamics at Polymer / Wall Interfaces: Origins of Flow Instabilities and Wall Slip. In: Granick, S., et al. Polymers in Confined Environments. Advances in Polymer Science, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69711-X_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-69711-X_6

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64266-4

  • Online ISBN: 978-3-540-69711-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics