Skip to main content

Genetic algorithms for ambiguous labelling problems

  • Evolutionary Search
  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1223))

Abstract

Consistent labelling problems frequently have more than one solution. Most work in the field has aimed at disambiguating early in the interpretation process, using only local evidence. This paper starts with a review of the literature on labelling problems and ambiguity. Based on this review, we propose a strategy for simultaneously extracting multiple related solutions to the consistent labeling problem. In a preliminary experimental study, we show that an appropriately modified genetic algorithm is a robust tool for finding multiple solutions to the consistent labelling problem. These solutions are related by common labellings of the most strongly constrained junctions. We have proposed three runtime measures of algorithm performance: the maximum fitness of the genetic algorithm's population, its Shannon entropy, and the total Hamming distance between its distinct members. The results to date indicate that when the Shannon entropy falls below a certain threshold, new solutions are unlikely to emerge and that most of the diversity in the population disappears within the first few generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Haralick and L. G. Shapiro. The consistent labelling problem: Part 1. IEEE PAMI, 1:173–184, 1979.

    Google Scholar 

  2. R. M. Haralick and L. G. Shapiro. The consistent labelling problem: Part 2. IEEE PAMI, 2:193–203, 1980.

    Google Scholar 

  3. R. M. Haralick and G. L. Elliott. Increasing search tree efficiency for constraint satisfaction problems. IJCAI 6, pages 356–364, 1979.

    Google Scholar 

  4. D. Waltz. Understanding line drawings of scenes with shadows. In P. H. Winston, editor, The Psychology of Computer Vision, pages 19–91. McGraw-Hill, 1975.

    Google Scholar 

  5. R. A. Hummel and S. W. Zucker. On the foundations of relaxation labeling processes. IEEE PAMI, 5:267–287, 1983.

    Google Scholar 

  6. O. D. Faugeras and M. Berthod. Improving consistency and reducing ambiguity in stochastic labeling: An optimisation approach. IEEE PAMI, 3:412–424, 1981.

    Google Scholar 

  7. E. R. Hancock and J. Kittler. Discrete relaxation. Pattern Recognition, 23:711–733, 1990.

    Article  Google Scholar 

  8. R. C. Wilson and E. R. Hancock. Graph matching by discrete relaxation. In E. S. Gelsema and L. N. Kanal, editors, Pattern Recognition in Practice, volume 4, pages 165–176. Elsevier, 1994.

    Google Scholar 

  9. C. D. Gelatt S. Kirkpatrick and M. P. Vecchi. Optimisation by simulated annealing. Science, 220:671–680, 1983.

    Google Scholar 

  10. S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE PAMI, 6:721–741, 1984.

    Google Scholar 

  11. D. Geiger and F. Girosi. Parallel and deterministic algorithms from MRFs: Surface reconstruction. IEEE PAMI, 13:401–412, 1991.

    Google Scholar 

  12. A. L. Yuille and J. J. Kosowsky. Statistical physics algorithms that converge. Neural Computation, 6:341–356, 1994.

    Google Scholar 

  13. J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.

    Google Scholar 

  14. N. J. Pearlmutter M. C. MacDonald and M. S. Seidenberg. The lexical nature of syntactic ambiguity resolution. Psychological Review, 101:676–703, 1994.

    PubMed  Google Scholar 

  15. A. H. Kawamoto. Nonlinear dynamics in the resolution of lexical ambiguity: A parallel distributed processing account. Journal of Memory and Language, 32:474–516, 1993.

    Google Scholar 

  16. N. J. Pearlmutter and M. C. MacDonald. Individual differences and probabilistic constraints in syntactic ambiguity resolution. Journal of Memory and Language, 34:521–542, 1995.

    Article  Google Scholar 

  17. J. A. Feldman and D. H. Ballard. Connectionist models and their properties. Cognitive Science, 6:205–254, 1982.

    Article  Google Scholar 

  18. M. Riani F. Masulli and E. Simonotto. Neural network models of perceptual alternation of ambiguous patterns. In S. Levialdi V. Cantoni, L. P. Cordelia and G. Sanniti di Baja, editors, Progress in Image Analysis, pages 751–758. World Scientific, 1990.

    Google Scholar 

  19. M. Riani and E. Simonotto. Stochastic resonance in the perceptyal interpretation of ambiguous figures — a neural network model. Physical Review Letters, 72:3120–3123, 1994.

    Article  PubMed  Google Scholar 

  20. W. Bialek and M. Deweese. Random switching and optimal processing in the perception of ambiguous signals. Physical Review Letters, 74:3077–3080, 1995.

    Article  PubMed  Google Scholar 

  21. N. Kawabata. Visual fixation points and depth perception. Vision Research, 18:853–854, 1978.

    Article  PubMed  Google Scholar 

  22. N. Kawabata and T. Mori. Disambiguating ambiguous figures by a model of selective attention. Biological Cybernetics, 67:417–425, 1992.

    Article  PubMed  Google Scholar 

  23. K. L. Horlitz and A. O'Leary. Satiation or availability — effects of attention, memory and imagery on the perception of ambiguous figures. Perception and Psychophysics, 53:668–681, 1993.

    PubMed  Google Scholar 

  24. F. G. Callari and F. P. Ferrie. Active recognition: Using uncertainty to reduce ambiguity. Proceedings of the 13th International Conference on Pattern Recognition, pages 925–929, 1996.

    Google Scholar 

  25. D. A. Huffman. Impossible objects as nonsense sentences. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 6, pages 295–323. Edinburgh University Press, 1971.

    Google Scholar 

  26. M. B. Clowes. On seeing things. Artificial Intelligence, 2:79–116, 1971.

    Article  Google Scholar 

  27. K. Sugihara. Picture language for skeletal polyhedra. Computer Graphics and Image Processing, 8:382–405, 1978.

    Google Scholar 

  28. J. Malik. Interpreting line drawings of curved objects. International Journal of Computer Vision, 1:73–103, 1987.

    Article  Google Scholar 

  29. L. R. Williams. Topological reconstruction of a smooth manifold-solid from its occluding contour. In ECCV 92, pages 36–47, 1992.

    Google Scholar 

  30. L. M. Kirousis. Effectively labeling planar projections of polyhedra. IEEE PAMI, 12:123–130, 1990.

    Google Scholar 

  31. P. Parodi and G. Piccioli. 3D shape reconstruction by using vanishing points. IEEE PAMI, 18:211–217, 1996.

    Google Scholar 

  32. E. R. Hancock. An optimisation approach to line labelling. In S. Impedovo, editor, Progress in Image Analysis and Processing, volume 3, pages 159–165. World Scientific, 1994.

    Google Scholar 

  33. A. S. Fraser. Simulation of genetic systems by automatic digital computers. Australian Journal of Biological Science, 10:484–491, 1957.

    Google Scholar 

  34. H. J. Bremermann. The evolution of intelligence. The nervous system as a model of its environment. Technical report, Deparment of Mathematics, University of Washington, Contact No. 477(17), 1958.

    Google Scholar 

  35. R. Toombs J. Reed and N. A. Barricelli. Simulation of biological evolution and machine learning. Journal of Theoretical Biology, 17:319–342, 1967.

    Article  PubMed  Google Scholar 

  36. G. Syswerda. Uniform crossover in genetic algorithms. In Proceedings of the Third International Conference on Genetic Algorithms, pages 2–9, 1989.

    Google Scholar 

  37. L. J. Eshelman. The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In G. J. E. Rawlins, editor, Foundations of Genetic Algorithms, volume 1, pages 265–283. Morgan Kaufmann, 1991.

    Google Scholar 

  38. G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 5:96–101, 1994.

    Article  Google Scholar 

  39. V. R. Vemuri W. Cedeño and T. Slezak. Multiniche crowding in genetic algorithms and its application to the assembly of DNA restriction-fragments. Evolutionary Computation, 2:321–345, 1995.

    Google Scholar 

  40. D. R. Bull D. Beasley and R. R. Martin. A sequential niche technique for multimodal function optimisation. Evolutionary Computation, 1:101–125, 1993.

    Google Scholar 

  41. S. J. Louis and G. J. E. Rawlins. Syntactic analysis of convergence in genetic algorithms. In D. Whitley, editor, Foundations of Genetic Algorithms, volume 2, pages 141–151. Morgan Kaufmann, 1993.

    Google Scholar 

  42. C. E. Shannon. A mathematical theory of communication. Bell System Techincal Journal, 27:379–423, 1948.

    Google Scholar 

  43. L. J. Eshelman J. D. Schaffer, R. A. Caruna and R. Das. A study of control parameters affecting online performance of genetic algorithms for function optimisation. In Proceedings of the Third International Conference on Genetic Algorithms, pages 51–60, 1989.

    Google Scholar 

  44. K. A. DeJong. An Analysis of the Behaviour of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, Department of Computer and Communication Sciences, 1975.

    Google Scholar 

  45. K. A. DeJong and W. M. Spears. An analysis of the interacting rÔles of population size and crossover in genetic algorithms. In Proceedings of the First Workshop on Parallel Problem Solving from Nature. Springer-Verlag, 1990.

    Google Scholar 

  46. J. J. Grefenstette. Optimisation of control parameters for genetic algorithms. IEEE SMC, 16:122–128, 1986.

    Google Scholar 

  47. M. K. Tanenhaus J. C. Trueswell and S. M. Garnsey. Semantic influences on parsing: Use of thematic rÔle information in syntactic disambiguation. Journal of Memory and Language, 33:285–318, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marcello Pelillo Edwin R. Hancock

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Myers, R., Hancock, E.R. (1997). Genetic algorithms for ambiguous labelling problems. In: Pelillo, M., Hancock, E.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 1997. Lecture Notes in Computer Science, vol 1223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62909-2_90

Download citation

  • DOI: https://doi.org/10.1007/3-540-62909-2_90

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62909-2

  • Online ISBN: 978-3-540-69042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics