Skip to main content

Geometrically deformable templates for shape-based segmentation and tracking in cardiac MR images

  • Contours and Deformable Models
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1223))

Abstract

We present a new approach to shape-based segmentation and tracking of multiple, deformable anatomical structures in cardiac MR images. We propose to use an energy-minimizing geometrically deformable template (GDT) which can deform into similar shapes under the influence of image forces. The degree of deformation of the template from its equilibrium shape is measured by a penalty function associated with mapping between the two shapes. In 2D, this term corresponds to the bending energy of an idealized thin-plate of metal. By minimizing this term along with the image energy terms of the classic deformable model, the deformable template is attracted towards objects in the image whose shape is similar to its equilibrium shape. This framework allows for the simultaneous segmentation of multiple deformable objects using intra-as well as inter-shape information. The energy minimization problem of the deformable template is formulated in a Bayesian framework and solved using relaxation techniques: Simulated Annealing (SA), a stochastic relaxation technique is used for segmentation while Iterated Conditional Modes (ICM), a deterministic relaxation technique is used for tracking. We present results of the algorithm applied to the reconstruction of the left and right ventricle of the human heart in 4D MR images.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Amini, T. E. Weymouth, and R. C. Jain. Using dynamic programming for solving variational problems in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):855–867, September 1990.

    Google Scholar 

  2. D. H. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13(2):111–122, 1981.

    Article  Google Scholar 

  3. J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Stat. Soc. B, 48(3):259–302, 1986.

    Google Scholar 

  4. F. L. Bookstein. Principal Warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, June 1989.

    Google Scholar 

  5. F. L. Bookstein. Morphometric tools for landmark data: Geometry and Biology. Cambridge University Press, 1991.

    Google Scholar 

  6. F. L. Bookstein. Applying landmark methods to biological outline data. In K. V. Mardia, C. A. Gill, and I. L. Dryden, editors, Image Fusion and Shape Variability Techniques, pages 59–70, July 1996.

    Google Scholar 

  7. G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34:344–371, 1986.

    Google Scholar 

  8. L. D. Cohen and I. Cohen. Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1131–1147, November 1993.

    Google Scholar 

  9. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active Shape Models — their training and application. Computer Vision and Image Understanding, 61(1):38–59, 1995.

    Google Scholar 

  10. S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741, 1984.

    Google Scholar 

  11. A. A. Goshtasby and D. A. Turner. Fusion of short-axis and long-axis cardiac MR images. In Workshop on Mathematical Methods for Biomedical Image Analysis, pages 202–211, San Francisco, CA, 1996. IEEE.

    Google Scholar 

  12. P. V. C. Hough. Method and means for recognizing complex patterns. U.S. Patent No. 3069654, 1962.

    Google Scholar 

  13. A. K. Jain, Y. Zhong, and S. Lakshmanan. Object matching using deformable templates. IEEE Transactions of Pattern Recognition and Machine Intelligence, 18(3):267–278, March 1996.

    Google Scholar 

  14. M. Kass, A. Witkin, and D. Terzopoulos. Snakes — Active contour models. International Journal of Computer Vision, 1(2):259–268, 1987.

    Google Scholar 

  15. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by Simulated Annealing. Science, 220:671–680, May 1983.

    Google Scholar 

  16. P. Lipson, A. Yuille, D. O'Keefe, J. Cavanaugh, J. Taaffe, and D. Rosenthal. Deformable templates for feature extraction from medical images. In Proc. First European Conf. on Computer Vision, pages 477–484, 1990.

    Google Scholar 

  17. K. V. Mardia and T. J. Hainsworth. Image warping and Bayesian reconstruction with grey-level templates. In Advances in Applied Statistics, pages 257–280. 1993.

    Google Scholar 

  18. T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: A survey. Medical Image Analysis, 1(2), 1996.

    Google Scholar 

  19. D. Rueckert and P. Burger. Contour fitting using stochastic and probabilistic relaxation for cine MR images. In Computer Assisted Radiology, pages 137–142, Berlin, Germany, June 21–24 1995. Springer-Verlag.

    Google Scholar 

  20. L. H. Staib and J. S. Ducan. Boundary finding with parametrically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(11):1061–1075, 1992.

    Google Scholar 

  21. G. Székely, A. Kelemen, Ch. Brechbühler, and G. Gerig. Segmentation of 2-D and 3-D objects from MRI volume data using constrained elastic deformations of flexible fourier contour and surface models. Medical Image Analysis, 1(1), 1996.

    Google Scholar 

  22. B. M. ter Haar Romeny, L. M. J. Florack, J. J. Koenderink, and M. A. Viergever. Scale-space: Its natural operators and differential invariants. In A. C. F. Colchester and D. J. Hawkes, editors, Information Processing in Medical Imaging, pages 239–255. Springer-Verlag, 1991.

    Google Scholar 

  23. B. M. ter Haar Romeny, L. M. J. Florack, A. H. Salden, and M. A. Viergever. Higher order differential structure of images. In H. H. Barret and A. F. Gmitro, editors, Information Processing in Medical Imaging, pages 77–93. Springer-Verlag, 1993.

    Google Scholar 

  24. D. Terzopoulos and D. Metaxas. Dynamic 3D models with local and global deformations — deformable superquadrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7):703–714, 1991.

    Google Scholar 

  25. K.D. Toennies and D. Rueckert. Image segmentation by stochastically relaxing contour fitting. In SPIE Conference on Medical Imaging, volume 2167, pages 18–27, Newport Beach, USA, February 1994.

    Google Scholar 

  26. P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and Applications. Reidel, 1987.

    Google Scholar 

  27. G. Wahba. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, 1990.

    Google Scholar 

  28. D. J. Williams and M. Shah. A fast algorithm for active contours and curvature estimation. CVGIP: Image Understanding, 55(1):14–26, 1992.

    Google Scholar 

  29. A. L. Yuille, D. S. Cohen, and P. W. Hallinan. Feature-Extraction from Faces using Deformable Templates. In Conference on Computer Vision and Pattern Recognition, pages 104–109. IEEE, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marcello Pelillo Edwin R. Hancock

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rueckert, D., Burger, P. (1997). Geometrically deformable templates for shape-based segmentation and tracking in cardiac MR images. In: Pelillo, M., Hancock, E.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 1997. Lecture Notes in Computer Science, vol 1223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62909-2_74

Download citation

  • DOI: https://doi.org/10.1007/3-540-62909-2_74

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62909-2

  • Online ISBN: 978-3-540-69042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics