
The Concurrency Factory
Software Development
Environment
Rance Cleaveland (rancegcsc.ncsu. edu)*
Philip M. Lewis (pml(~cs. sunysb, edu) t
Scott A. Smolka (sasr sunysb, edu) t
Oleg Sokolsky (olegr t

ABSTRACT
The Concurrency Factory is an integrated toolset for specification, sim-
ulation, verification, and implementation of real-time concurrent systems
such as communication protocols and process control systems. Two themes
central to the project are the following: the use of process algebra, e.g.,
CCS, ACP, CSP, as the underlying formal model of computation, and the
provision of practical support for process algebra. By "practical" we mean
tha t the Factory should be usable by protocol engineers and software de-
velopers who axe not necessarily familiar with formal verification, and it
should be usable on problems of real-life scale, such as those found in the
telecommunications industry.
This demo is intended to demonstrate the following features of the Concur-
rency Factory: the graphical user interface VTView and VTSim, the local
model checker for the alternation-free modal mu-calculus, and the graphical
compiler tha t transforms VTView specifications into executable code.

1 Introduction

T h e Concurrency Factory is an i n t e g r a t e d toolse t for specif icat ion, s im-
u la t ion , ver i f icat ion, and i m p l e m e n t a t i o n of rea l - t ime concurren t sys tems
such as c o m m u n i c a t i o n p ro toco l s and process control sys tems. The p ro jec t ,
which is a j o in t effort be tween SUNY Stony Brook and Nor th Ca ro l ina S t a t e

*Department of Computer Science, N.C. State University, Raleigh, NC 27695-8206,
USA. Research supported in part by NSF/DARPA grant CCR-9014775, NSF grant
CCR-9120995, ONR Young Investigator Award N00014-92-J-1582, and NSF Young In-
vestigator Award CCR-9257963, and AFOSR grant F49620-95-1-0508.

?Department of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11794-
4400, USA. Research supported in part by NSF grants CCR-9120995 and CCR-9208585,
and AFOSR grants F49620-93-1-0250 and F49620-95-1-0508.

392

University, officially started in Spring '92, and is currently supported by
grants from NSF and AFOSR. Two themes central to the project are the
following: the use of process algebra (e.g., CCS, CSP, ACP) as the under-
lying formal model of computation, and the provision of practical support
for process algebra. By "practical" we mean that the Factory should be us-
able by protocol engineers and software developers who are not necessarily
familiar with formal verification, and it should be usable on problems of
real-life scale, such as those found in the telecommunications industry.

The main features of the Concurrency Factory are the following:

�9 A graphical user interface, VTView/VTSim, that allows the non-
expert to design and Simulate concurrent systems using process alge-
bra. VTView is a graphical editor for hierarchically structured net-
works of finite-state processes, and VTSim is a sophisticated environ-
ment for the simulation and testing of VTView-constructed specifi-
cations. We are currently extending the GUI to allow processes to be
embedded in states of other processes, thereby permitting compact
specifications such as those found in statecharts.

�9 A textual user interface for the language VPL, a simple language
for concurrent processes that communicate values from a finite data
domain. A VPL compiler translates VPL programs into networks of
finite-state processes.

�9 A suite of verification routines that currently includes a linear-time,
global model checker for L,1, the alternation-free fragment of the
modal mu-calculus [CS93], a local model checker for L,1 [So96], a
local model checker for a real-time extension of L~I [SS95], and strong
and weak bisimulation checkers.

Care is being taken to ensure that these algorithms are efficient
enough to be used on real-life systems. For example, we are inves-
tigating how these algorithms can be parallelized [ZS92, ZSS94], and
made to perform incrementally [SS94].

�9 A graphical compiler that transforms VTView and VPL specifications
into executable code. Our current version produces Facile [GMP89]
code, a concurrent language that symmetrically integrates many of
the features of Standard ML and CCS. We are also considering adding
a concurrent extension of C++ as another target language. The com-
piler relieves the user of the burden of manually recoding their designs
in the target language of their final system.

The Concurrency Factory is written in C ++ and executes under X-
Windows, using Motif as the graphics engine, so that it is efficient, easily
extendible, and highly portable. It is currently running on SUN SPARC-
stations under SunOS Release 4.1. The basic organization of the system is
depicted in Figure 1.

393

Incremental
~arallel

| i : I '

" @
FIGURE 1. Basic organization of the Concurrency Factory.

In what follows, we briefly describe VTView and VTSim, the main com-
ponents of the demo, and a protocol verification case study.

394

2 Graphical Editor and Simulator

The graphical user interface of the Concurrency Factory consists of two
main components, VTView and VTSim (VT stands for Verifier's Toolkit).
VTView is a graphical tool supporting the design of hierarchically struc-
tured systems of communicating tasks expressed in GCCS, a graphical
specification language. GCCS provides system builders with intuitive con-
structs (buses, ports, links, a subsystem facility, etc.) for designing systems,
and it supports both top-down and bottom-up development methodologies.
As user designs are entered using VTView, an internal representation is
created by invoking the appropriate methods associated with process and
network objects.

In contrast with other graphical languages, such as Harel's statecharts
and Maraninchi's Argonaute, GCCS is designed to model systems in which
processes execute asynchronously (although communication between pro-
cesses is synchronous). The language is equipped with a formal semantics
in the form of a structural operational semantics, ~ la Plotkin and Milner.
The semantics has been "implemented" in the Factory in the form of meth-
ods that determine the set of transitions that are possible for a network or
a process from a given state. Both the graphical simulator and the method
that produces the global automaton from a network of process rely fun-
damentally on these methods. By encapsulating the semantics of VTView
objects, all tools within the Factory are guaranteed to interpret processes
and networks consistently.

VTSim permits users to simulate graphically the execution of GCCS sys-
tems built using VTView. The tool provides both interactive and automatic
modes of operation, and it also includes features such as breakpoints and
reverse execution. It also enables users to view the simulated execution of a
system at different levels in the structure; one can either choose to observe
the simulation at the interprocess level and watch the flow of messages, or
one can look at individual processes in order to see why messages are sent
when they are.

The demo will illustrate the look-and-feel of VTView and VTSim by con-
sidering the well-known Alternating Bit Protocol modeled as a sender and
receiver process communicating over an unreliable medium, also modeled
as a process.

3 A Case Study: The i-protocol

The Concurrency Factory's local model checker was used to detect and di-
agnose a non-trivial livelock in the i-protocol, a bidirectional sliding-window
protocol employed in the publicly available GNU UUCP file transfer utility.
The model checker was dispatched on an instance of the protocol having

395

a window size of 2, and explored about 1.079 x 106 states out of a total
estimated global state space of 1.473 • 1012.

Key to the Factory's success was the use of an abstraction to reduce the
message sequence number space from 32 - - the constant defined in the
protocol's C-code - - to 2W, where W is the window size. This abstraction
is shown to preserve the truthhood of all modal mu-calculus formulae.

4 Conclusions

We have described the Concurrency Factory, a graphical environment that
supports the following system development tasks: specification (VTView),
simulation (VTSim), verification (model and bisimulation checking), and
implementation (Facile graphical compiler). Much work remains to be done
on the project, including better state-space management techniques and
broader support for real-time systems.

5

[GMP89]

[ss94]

[ss95]

[So96]

[zs92]

[ZSS94]

REFERENCES

R. Cleavela~d and B. U. Steffen. A linear-time model checking
algorithm for the alternation-free modal mu-calculus. Formal
Methods in System Design, 2, 1993.

A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmertric
integration of concurrent and functional programming. Interna-
tional Journal of Parallel Programming, 18(2), 1989.

O. Sokolsky and S. A. Smolka. "Incremental Model Checking in
the Modal Mu-Calculus". In Proceedings of CAV'9~. LNCS 818,
1994.

O. Sokolsky and S. A. Smolka. Local model checking for real-
time systems, In Proc. 7th CAV (1995).

O. Sokolsky. Efficient graph-based algorithms for model checking
in the modal mu-calculus. Ph.D. Thesis, Department of Com-
puter Science, SUNY, Stony Brook (1996), forthcoming.

S. Zhang and S. A. Smolka. Efficient parallelization of equiv-
alence checking algorithms. In M. Diaz and R. Groz, editors,
Proceedings of FORTE '92 - Fifth International Conference on
Formal Description Techniques, pages 133-146, October 1992.

S. Zhang, O. Sokolsky, and S. A. Smolka. On the parallel com-
plexity of model checking in the modal mu-calculus. In LICS '94,
July 1994.

