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Abstract  

Given a plane graph G, we wish to draw it in the plane, according to the given embedding, 
in such a way that the vertices of G are drawn as grid points, and the edges are drawn as 
straight-line segments between their endpolnts. An additional objective is to minimize the 
size of the resulting grid. It is known that each plane graph can he drawn in such a way in a 
(n - 2) x (n - 2) grid (for n ~_ 3), and that no grid smaller than (2n/3 - 1) x (2n/3 - 1) can 
be used for this purpose, if n is a multiple of 3. In fact, it can be shown that, for all n _~ 3, 
each dimension of the resulting grid needs to be at least [2(n - 1)/3J, even if the other one 
is allowed to be infinite. In this paper we show that this bound is tight, by presenting a grid 
drawing algorithm that produces drawings of width [2(n - 1)/3J. The height of the produced 
drawings is bounded by 4L2(n - 1)/3J - 1 .  

1 I n t r o d u c t i o n  

The problem of automatic graph drawing has attracted recently a lot of attention, due to its 

numerous practical applications and challenging mathematical  and algorithmic questions tha t  

arise in this area. Generally, given a graph G, the task is to produce an ~sthetie drawing of G, 

one tha t  accurately reflects the topological structure of G in a graphical form. Many versions of 

this problem have been considered, and there is a variety of techniques, algorithms, and software 

packages tha t  are currently available. (See the survey in [BETT] for more information.) 

For planar graphs, we typically require that  vertices are represented by points in the plane, and 

edges are drawn as non-intersecting straight-line segments between their endpoints. Additionally, 

we are often given a plane graph, that  is a planar graph with a given planar embedding, represented 

comhinatorially by cyclic orderings of edges incident to all vertices. Then the drawing needs to be 

consistent with tha t  given planar embedding, in the sense tha t  for each vertex v, the given cyclic 

ordering of edges incident to v needs to be the same as their clockwise ordering in the drawing. 

In this paper we deal with the following version: given a plane graph G, we want to map 
its vertices into integer grid points in such a way that  the edges between them can be drawn 

as straight, non-intersecting llne segments. The resulting drawing has to be consistent with the 

planar embedding of G. We call such mappings grid drawings. 

It has been proven that  each plane graph has a straight-line drawing [Fa48, Wa36, St51], 

which implies tha t  it also has a grid drawing, since we can approximate real vertex coordinates by 
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rational numbers, and then use appropriate scaling. The grids obtained by following this method 

are, unfortunately, of exponential size. 

The question whether smaller, polynomial-size, grids can be used for this purpose was open 

until 1988, when de F~aisseix, Pach and Pollack [FPP88, FPP90] proved tha t  each plane graph 

with n vertices can be embedded into a (2n - 4) • (n - 2) grid. (Throughout the paper we assume 

that  n > 3.) We will refer to their method as the shift  method. Their paper initiated intensive 

research in this area, and led to new results and implementations. Chrobak and Payne [CP89] gave 

a simple, linear-time implementation of the shift method. Schnyder [Se90] presented a different 

technique, based on so called barycentric representations,  tha t  led to smaller grid drawings of 

size (n - 2) • (n - 2). He also pointed out later (personal communication) tha t  there is a close 

relationship between the shift method and barycentrie representations, and tha t  the grid size in 

[CP89] can be reduced to (n - 2) • (n - 2) without affecting time complexity. 

The obvious question is: what is the minimum size of grid drawings? In their paper, [FPP88] 

proved that ,  in the worst ease, no grid smaller than (2n/3  - 1) • (2n/3  - 1) is possible for n-vertex 

plane graphs, if n is a multiple of 3. The simple argument they presented can be easily modifed 

to show that ,  for all n > 3, each dimension of the grid needs to be at least [2(n - 1)/3J, even if 

the other one is unbounded. 

In this paper we show that  this bound is tight, by presenting an algorithm tha t  embeds each 

n-vertex plane graph into a grid of width at most [2(n - 1)/3J. The height of the resulting 

drawings is at most 412(n - 1)/3j - 1 _< 8n / 3  - 3. 

2 Pre l iminar ies  

Let G = (V, E)  be an arbitrary maximal (triangulated) plane graph with n vertices, where n > 3, 

and lr = v l , . . . ,  vn an ordering of V such that  (vl, v2, vn) is the external face of G. Define Gk to 

be the subgraph of G induced by vl , .  �9 vk and Ck to be its external face. We say tha t  r is a 

canonical ordering of  G if the following conditions are satisfied for each k = 3 , . . . ,  n: 

(col) Each Gk is 2-connected and internally triangulated ( that  is, all internal faces of Gk are 

triangles). 

(co2) Ck contains (vl, v~). 

(co3) If k < n, then vk+l is in the exterior face of Gk, and all neighbors of vk+l in Gk belong to 
Ck. 

It is easy to see that  Conditions (col) and (co3) imply tha t  the neighbors of vk+l must,  in 

fact, be consecutive in Ck. The existence of canonical orderings was proven by de Fraisseix, Pach 

and Pollack in [FPP88] (See also [Ka93]). 

L e m m a  1 Let  G be a maximal  plane graph, and (v l ,  v2) an edge on its external  face. Then  there 

exists a canonical ordering r = vl ,  v2,. . ., v~ o f  G, and r can be constructed in l inear t ime.  

By an ordered plane graph (G, r )  we will understand a plane graph G with a given canonical 

ordering r = v l , . . . , v n .  By the contour of  Gk we mean its external face written as Ck = (wl = 

~)I, W 2 , ' ' ' ,  W m  ~ V2). 
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Let k _> 3, and let the neighbors of v = v~+a in Gk be wp, wp+a, . ' . . ,  wq. The in-degree of 

v, denoted deg-(v), is the number of neighbors of v in Gk, tha t  is deg-(v) = q - p + 1. For 

i = p , . . . ,  q, we denote ind~(wi) = i - p + 1 and call it the index of wi with respect to v. For 

k = 1,2,3,  deg-(vk) and indvk are undefined. 

By a and b we will usually denote, respectively, the number of vertices of in-degree 2, and the 

number of vertices of in-degree > 3, among v4,. . . ,v, , .  If n > 4, dearly, deg-(vk) > 2 for ear.h 

k = 4 , . . . , n -  1, deg-(v,~) >_ 3, and n = a + b + 3 .  

Let N denote the set of non-negative integers, and G a given plane graph with vertex set V. 

Let P = (x, y) : V --* N • N be a function that  maps V into an integer grid, where x(v) and y(v) 

represent the x and y coordinates of a vertex v. 

Given a mapping P = (z ,y) ,  we say that  P is a grid drawing of G, if it satisfies the following 

conditions: (gdl)  If u ~ v, then P(u) ~ P(v). (gd2) No two edges of G intersect in P. (gd3) For 

each vertex v, the clockwise ordering of the segments [P(v), P(u)],  where u is a neighbor of v, is 

identical to their cyclic ordering in the given planar embedding of G. 

The width of a given drawing is defined as the distance between its leftmost and rightmost 

vertices, tha t  is maxu,v Ix(u) - x(v)l. The height is defined similarly: maxu,v ly(u) - y(v)l. 

By a minor modification of the construction in [FPP88], we obtain the following theorem. 

T h e o r e m  1 For each n > 3 there is an n-vertex plane graph H,~, such that each grid drawing of 

H,~ has width at least [2(n - 1)/3J. 

3 T h e  Shift  M e t h o d  for Grid Drawings  

Let (G, ~r) be a given ordered maximal plane graph, where r = r l , . . . ,  vn and n ~ 3. Our general 

strategy is similar to the methods from [FPP88, CP89]: we add vertices one at  a time, in canonical 

order. At every time step, the contour Ck satisfies a certain invarlant tha t  involves restrictions on 

the slopes of contour edges. When adding a vertex vk+l we determine its location in the grid and, 

if necessary, shift some parts of Gk to the right in order to preserve the invariant. The difficult 

part  is to determine which internal vertices of Gk can be shifted to the right without violating 

planarity. We will describe such a method in this section. 

We will maintain a set U(v) for each vertex v. This set will contain vertices located "under" 

r tha t  need to be shifted whenever r is shifted. Initially, U(v~) = {r~} for i -- 1,2,3. Suppose 

tha t  3 _~ k _~ n -  1 and tha t  we are about to add vk+l to Gk. Let the contour of Gk he 

Ck = (wl = view2 . . . .  ,win = v2) and that  wp, . . . ,wq are the neighbors of vk+l in Gk. Then we 
q--1 

set VCvk+l) :=  {Vk+l } U Ui=p+l V(wi). 

Shifting a contour vertex wj is achieved by operation shift(wj), tha t  increases the x-coordinate 

of each u e U~=j U(wi) by 1. 

Initially, vl, v2, va are mapped into different grid points so tha t  x(v2) > x(vl)  ~ 0, and va is 

located at  a point above the line segment joining vl,v2 and satisfying x(vl) <_ z(va) _< x(v~). 

Inductively, suppose tha t  3 < k < n - 1, that  Gk has already been embedded, and that  we 

are about to add v = Vk+l. Let Ck = (wl , . . . ,win)  be the contour of Gk, and wp . . . .  ,Wq be the 

neighbors of v in Gk. Apply shift(wd) to some of w l , . . . ,  wm (possibly none), so tha t  afterwards 
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there  exists at least one point (x ' , y ' )  such tha t  (gsml)  x(wp) < x' <_. x(wr (gsm2) ( x ' , y  ~) is 

located above Ck in the following sense: the  half line {(x I, z) : z > y~} does not  intersect  Ck, and 

(gsm3) all vertices wp . . . . .  wq are visible from (x' ,  y'). Pick an arbi t rary  such point  (x ' ,  y~) and 

set (=, ~)(v) = (=', y'). 

L e m m a  2 For all choices of shift operations and vertex coordinates, as long as (gsml), (gsm2) 
and (gsm3) are satisfied, the Generic Shift Algorithm produces a correct grid drawing. 

4 M i n i m u m - W i d t h  G r i d  D r a w i n g s  

Let (G,~r) be a given ordered, maximal plane graph, where ~r = Vl .... ,vn. For a given 3 < k < 

n - 1, let wp,...,wq be the neighbors ofv = v~+1 in Ck. When we add v to Gk, its leftmost and 

rightmost edges (wp, v), (v, wq) become contour edges. We call (wp, v) a forward edge and (v, wq) 
a backward edge. All vertices and edges that disappear from the contour when we add v are said 

to be covered by v. 

A vertex v ~ vl, v~, v3 of in-degree 2 is called forward-oriented (baclcward-oriented) iflt covers 

a forward (backward) edge. Let af and ab be the numbers of forward-oriented and backward- 

oriented vertices. Note that the values of a~, ab depend on the canonical ordering. 

Assume now tha t  n > 4. Each vertex v i~ vl, v~ will be classified as stable or unstable. Also, 

with each such vertex we will associate a sequence of vertices called its domino chain, DC(v), and 

a vertex dorn(v) called the dominator of  v. 

These concepts are defined as follows: For v = v~, we define DG~vn) -= (vn), dom(vn) is 

undefined, and vn is stable. 

Suppose now 2 < k < n - 2, v = vk+l, and let u be the  lef tmost  neighbor of  v in Gk, tha t  is 

ind~(u) --- 1 (for k = 2 we assume u = vl). Let also z be the  ver tex tha t  covers edge (u ,v) .  Such 

z must  exist because v ~ v~. Then: 

(dc l )  If ind:~(v) = 2, then DC-~v) := (v), dora(v) := z and v is unstable.  

(de2) If ind2(v) _ 4, then DC~v) := (v), dora(v) := z and v is stable. 

(de3) If  ind;~(v) = 3 and nc'~z) = (zl . . . . .  zi, z), then DC~v) := (zl . . . . .  zi, z ,v)  and dora(v):= 
dora(z). Also, v is stable iff z is stable. 

An unstable vertex of  in-degree 2 is called a room-shift vertex. 

Note tha t ,  for n > 4, DC(v3) contains only vertex v3, and the  dominator  of  v3 is the  vertex z 

tha t  covers edge (vl, v3); thus indz(v3) = 2. 

E x a m p l e :  Consider the ordered graph in Fig 1. We have DC(10) = (13,11,10),  dora(10) = 19, 

])C(8) -- (13,11,10,9 ,8)  and dora(8) = 19, Since ind18(17) = 4, ver tex 17 is stable. Since 

ind17(16) = 2, vertices 16, 15 are unstable. Vertices 4, 5, 7, 8, 15 are room-shift  vertices, and 14 

has in-degree 2 but is not a room-shlft vertex. $ 
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! 2 

Figure 1: An example of a canonical ordering. 

A l g o r i t h m  .4 : Given a maximal plane graph G, with n > 3 vertices, pick any edge (Vl,V2) on 

the external face of G, and find its canonical ordering r = v l , . . . ,  vn. If the number of forward- 

oriented vertices in ~ is greater than the number of backward-oriented vertices, then we modify 

r by swapping vl and v2. 

At this point, we are given an ordered maximal plane graph (G, ~r). If n -- 3, we define 

( z ,y ) (v l )  = (0,0), (z,y)(v~) = (1,0) and (z,y)(v3) = (0,1), and the algorithm terminates. 

Assume now that n > 4. We first embed Vl, v2, vs, as follows: (z, y)(vl) = CO, 0), (x, y)(v2) = 

(2,0) and (~,y)(v3) = (1,1). 

After this initialization, we add vertices in order v4 , . . . , v , .  Suppose 3 < k < n - 1, and that 

we are about to add v = vk+l. As usual, let Ck = (wl , . . . ,w,~)  and wp, . . . ,wq be the neighbors 

of v in Gk. If v is stable then x(v) := z(wp). Otherwise, z(v) := z(wv) + 1 and, additionally, if 

deg-(v) = 2 then we do shift(wq). 

In both cases the y(v) is chosen to be the smallest integer such that (zl, yl) = (X(v),y(v)) 

satisfies requirements (gsm2) and (gsm3). 

If we swapped vl, v2 at the beginning of the algorithm, the clockwise ordering of edges incident 

to each vertex will be reversed with respect to the one in the given planar embedding. This 

can be easily modified, if desired, by using the left-right reflection: set ~0 := z(v2) and then 

x(v~) := xo - x(vk) for all k. 

L e m m a  3 Assume n > 4, and let u, v # Vl, vs. Then C a) I / u  E DC(v) then DG~u) is a prefiz o~ 
DC-~v). (S) I f  u q~ DC'~v) a n d v r  DC(u) then: (bl) DC(u)NDC(v) = $. (52) I / u , v  are unstable, 
then dora(u) # dora(v). 

T h e o r e m  2 If  G is a given maximal plane graph with n > 3 vertices, then Algorithm .A produces 

a grid drawing of G o~ width [2(n - 1)/3J and height n2/4. 
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Proof: Correctness: Omit ted .  

Width estimate: If r is an  arbi t rary canonical order ing of  G and  ~t is obta ined by swapping 

vl with  v2, t hen  each ver tex of degree 2 is forward-oriented in 7r iff it is backward-or iented in 7r ~. 

T h u s  in the  canonical  ordering r computed  in .4 we have  ar _< ab. 

Let w be the  width  of  the  drawing const ructed by a lgor i thm . 4 ,  and  denote  by a "  the  n u m b e r  

of  room-shif t  vertices (other  t h a n  vl,  v2, v3). Then  w = a "  % 2. Observe  t h a t  a domina to r  cannot  

be a backward-or iented vertex of  in-degree 2. By L e m m a  3, domina to r s  of  room-shif t  vertices are 

dist inct ,  and  t hey  are dist inct  from the  domina tor  of  v3. This  implies t ha t  a "  _< at + b  - 1, and  we 

g e t w = a " + 2  < ( a f + b - l ) + 2  < a / 2 + b + l  = n - a / 2 - 2 .  On the  o ther  band ,  w _ < a + 2 .  

Therefore  w ~ mi n (a  % 2, n - a/2 - 2) < 2(n - 1) /3,  as required.  

Height estimate: Let - 7  be the  smallest  slope a m o n g  the  edges in the  current  contour .  After  

we add  a room-shi f t  ver tex to the  contour,  the  smalles t  con tour  slope is a t  least  - %  After  we 

add  a vertex which is no t  a room-shif t  ver tex the  smalles t  con tour  slope will be at  least  - 7  - 1. 

Thus ,  if G has  a ~~ room-shif t  vertices, then  the  width  of  the  drawing is exact ly  a TM + 2 and  the  

edge (on,v2) has  slope at  least  - ( n  - 2 - a " ) .  Therefore t he  height  of  the  drawing is a t  mos t  

(a" + 2)- (n - ~" - 2) < . V 4 .  o 

5 R e d u c i n g  H e i g h t  

As usual ,  let C ,  = (wa = v l ,w2 , . . . ,w ,~  = v2) be the  contour  of  Gk. T h e n  each con tour  edge 

(wl, Wi+l) belongs to one of  the  following four types:  vertical: when z(wl) = z(wi+~), horizontal: 
when y(wl) = y(wi+l), upward: when y(wl) < y(wi+a), downward: when y(wl) > y(wi+l). 

We define the  slack between u and v by slack(u, v) = y(v) + 4Ix(v) - x(u)]  - y(u). We will 

dist inguish two types  of shifts. Let v be a vertex to be installed.  As in Algor i thm ` 4 ,  a room.shift 
occurs when v is a room-shif t  vertex. A slope-shift occurs when we shift the  r igh tmos t  neighbor  

wq of  v in order to reduce the  absolute  value of the  slope of  edge (v, wq). We will call such v 

slope-shift vertices. No two shifts will occur s imultaneously.  A shift vertex is either a room-shlf t  

or a slope-shift vertex. 

A vertex v is slack-preserving if  ei ther ( sp l )  deg-(v) > 4, or  (sp2) deg-(v) = 3 and  v is s table.  

Also, v is slack-reducing if  ei ther ( s r l )  deg-(v) = 3 and  v is uns table ,  or (st2)  deg-(v) = 2 and v 

is stable. Note t ha t  the  two above concepts are not  complementary ,  since room-shif t  vertices are 

neither slack-preserving nor slack-reducing. 

A l g o r i t h m  B : T he  choice of  the  canonical  ordering 7r = vl . . . .  , v ,  and  the  init ialization are 

exactly the  same as in Algor i thm .4 . 

Assume  now t ha t  n _> 4, and  suppose tha t  we are now abou t  to add a vertex v = vk+l , for 

3 < k < n - 1. As usual ,  we denote  Ck = ( w l , . . . , w m ) ,  and w p , . . . , w q  are the  neighbors  o f v  in 

Gk. 

Let x(v) := z(wp) if v is stable,  otherwise x(v) :=  x(wp) + 1. T h e n  we consider three  cases. 

Case 1: If v is slack-preserving,  then  y(v) :=  y(wq) + 4[X(Wq) -- x(v)]  -- slack(wq_l, wq). Note 

tha t  slack(v, wq) = slack(wq_l, wq). 
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Case 2: If v is slack-reducing, then y(v) := y(wq) + 4[z(wq) - x(v)] - slaek(wq_l,wq) + 1. Note 
that slack(v, wq) = slack(wq_l,Wq) - 1. Then, if slack(v, wq) = 0, we slope-shift Wq by 
executing shift( wq). 

Case 8: If v is a room-shift vertex, then we room-shift wq by executing shifl(wq). If (wp, wq) is 

upward, then y(v) := y(wq). If (wp, wq) is horizontal, then y(v) := y(w~) + 1. If (wp, wq) is 
downward, then y(v) := y(wp). 

L e m m a  4 Algorithm Y produces a correct grid drawing, and the height of this drawing is less 
than 4 times its width, that is y(vn) < 4x(v2). 

L e m m a  5 If G is a n.vertex plane graph, then Algorithm B computes a grid drawing of G of 
width at most [2(n - 1)/3J. 

T h eo re m 3 Given a maximal n-vertex plane graph G, Algorithm B constructs a grid drawing of 
G into a [2(n - 1)/3J x 412(n - 1)/3J - 1 grid. 

T h eo re m 4 Algorithm B can be implemented in linear time. 
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