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Abstract. The purpose of this paper is to verify a distributed cache memory system by 
using the following general verification method: verify the properties characterizing a complex 
system on some small finite abstraction of it, obtained as a composition of abstractions of 
each component of the system. For a large class of systems including infinite state systems, 
the abstractions of the components can be obtained by replacing all operators on concrete 
domains by abstract operators on some abstract domain. This holds also for the abstraction 
of the control part of the system as we consider a kind of guarded command programs where 
all the control is expressed in terms of operations on explicit control variables. 

1 I n t r o d u c t i o n  

The purpose of this paper is to show the practical applicability of the verification method 
proposed in [LGS+92, GL93a, GL93b, CGL91, Lon93] for infinite state systems. This 
verification method, based on the principle of abstract interpretation [CC77], proposes to 
verify a program defining some complex system, where the specification must be given 
in the form of a set of VCTL* [SG90] formulas, as follows: define an appropriate abstract 
program, obtained compositionally from the the given program, and verify the required 
properties on it. Our way of computing abstract programs is very similar to that proposed 
in [CGL91, Lon93], but our Concept of compositionality is different from that proposed 
in [Lon93] or in [Pnu85]. We construct a global abstraction of the system by composing 
abstractions of its components, whereas the other method consists in deducing properties 
of the composed system from properties of its components. Both approaches are useful, 
but in the example we treat in this paper, the global properties cannot be deduced easily 
from properties of the components. An abstraction of each component is obtained applying 
the principle of abstract interpretation by means of a relation Q relating the domain of 
its variables and the domain of the set of some abstract variables. 

In [Loi94] is described a tool allowing to verify finite state systems in a fully automatic 
way by using this method. Here, we show that the same method is also tractable in practice 
for infinite state systems where a complete automatization is not possible. In fact, i f - -  
depending on the formula one wants to verify - -  for each component Pi one can guess an 
appropriate abstraction relation Qi verification becomes often a relatively simple task as 

- the corresponding finite state abstract program is reasonably easy to obtain, 
- the verification of the properties on the obtained abstract program can be done fully 

automatically. 

In Section 2, we recall all the ingredients we need for our verification method: 
-- a simple program formalism similar to that used e. g., in [Pnu86], 
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- a method to compute abstract programs, consisting in defining for each operator on 
the concrete domains a corresponding abstract operator ; this is the only step in the 
proposed method that cannot be fully automated. 

- the temporal logic CTL* and its fragments, used for the description of properties, 
- the preservation results allowing to deduce the validity of a property on the concrete 

program from its validity on the abstract program and 
- the compositionality results allowing to compute an abstract program by composing 

abstractions of its components. 
We illustrate all the definitions and results on a small buffer example. In Section 3, we 
verify - -  by applying in a systematic way our method - -  a distributed cache memory 
system defined in [ABM93]. In [DGJ+93] several (complex) correctness proofs are given 
for this system based on different methods. Using our method, the verification of this 
system is almost as simple as the verification of the tiny buffer, as we need almost the 
the same abstract operations. 

2 A v e r i f i c a t i o n  m e t h o d  u s i n g  a b s t r a c t i o n s  

2.1 A p r o g r a m  desc r i p t i on  fo r ma l i sm  

We adopt a simple program formalism which is not meant as a real programming language 
but which is sufficient to illustrate our method. A complex system is a parallel composition 
of basic programs P of the following form 

Variables : xl : T1, ..., xn : Tn 

Transitions: (tl)... actionl(xl, . . . ,zn, x~,...,x',,) 

(tp) actionp(Zl,.. . ,x,,  z ' l , . . . ,z ' )  

Initial States : init(zl  .... , z , )  

where xi are variables of type ~ and Lv = {~1,...,t~} is the set of program labels. 
Each actionl is an expression with variables in the set of program variables and a set of 
primed variables which is a copy of the set of state variables; as in [Pnu86, Lam91], actioni 
represents a transition relation on the domain of the program variables by interpreting the 

! ! 
valuations o f X p  = (xl, ..., z , )  as the state before, and the valuations of X i, = (x 1, ..., zn) 
as the state after the transition. We denote the set of valuations of Xp by Val(Xp). 

Semaalics : Program P defines in an obvious manner a transition system Sp = (Qe, Rp) 
where 

- Qp = Val(Xp) is the set of states, 
- Rp C_ Qp • Qp is a transition relation defined by Rp = {(q, q') I 3 i .  actioni(q, q')}. 

The predicate init defines the set of initial states. It is used in the formulas specifying 
the program: properties are in general of the form in i t=~ where r expresses the property 
one wants to verify. 

We do not distinguish variables representing inputs as they need not be treated in a 
particular manner. However, we annotate in the programs the variables which are meant 
as inputs as this makes programs easier to read. 

Labels are used to name "events" or "actions". If 6 is a label and (v, v') a pair of 
valuations such that actioni(v, v') is true, then the transition from state v to state v' is 
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an event g. If e is the valuation of the "input" variables extracted from v, then we call 
this event also ti(e). Events are used for the expression of properties. 

Example I an infinite lossy buffer. The following program represents an unbounded buffer 
taking as input elements e of some data  domain clam. The event push(e) enters e (if it 
has never been entered yet) into the buffer or arbitrarily "loses" it, and pop(e) takes e 
out of the buffer if it is its first element. 

Variables : e : elem (Input) 
E : set of elem (already occurred events push(e)) 
B : bu f f e r  of elem 

Transi t ions:  (push(e)) allowed(e, E, E') A (add(B, e, S ' )  V u n e h ( S ) )  
(pop(e)) f i r s t (B ,  e) A tail(B, e, B ' )  A unch(E)  

Initial States : empty(B) 

E contains the elements e such that push(e) has already occurred, and a l lowed(e ,  E, E')  xs 
necessarily false if e E E. All other predicates have the intuitive meanings: a d d ( B ,  e, B ~) 
holds if B ~ is obtained by adding element e at the end of the buffer B; t a i l (B ,  e, B ~) 
holds if B t is obtained by eliminating e from B if e is its first element ( f l rs t (B,  e) is 
true); e m p t y ( B )  is true if B is the empty buffer, unch(X) ,  where X = z l ,  . . .xniS a 
tuple of program variables, represents the transition relation which lets all variables in X 
unchanged, i. e., unch(X)  = Ai(x~ = xi). 

We use predicates of the form add(B, e, B') i n s t e a d  o f  B '  = ADD(B, e) where A D D  
is a function, as abstract operations are in general nondeterministic. This is also the way 
of representing operations which is proposed, e. g. in [CGL91, Lam91]. 

Composed programs : In [GL93b] we obtain our results for more general parallel com- 
position operators, but here we need only asynchronous composition. If P1 and /'2 are 
programs defined on a tuple of state variables X1, respectively X2, then P1 I~ P2 is the 
parallel composition of Pt and P~ defining the transition system S=(VaI (Xx  U X2), R) 
where 

R = Rp1 A unch(X2 - X1) V Rp~ A unch(X1 - X2) 
Each transition of P1 NI P2 is either a transition of P1 which leaves all variables which are 
declared in P2 but not in P1 unchanged or the other way round. 

2.2 A b s t r a c t  p r o g r a m s  

As proposed in [CGL91, LGS+92], given a program Prog and a predicate # on the vari- 
ables of Prog and a tuple of abstract variables X A A A = (X 1 , ...Xm) , representing a relation 
between the concrete and the abstract domain (a function in [CGL91]), then any program 
Prog A defined on X A, such that  for each action action of Prog there exists an action 
action A of Prog A with the same label, such that  

3 X 3 X '  . ~ ( X , X  A) A g ( X ' , X  A') A ac t ion(X,X ' )  ~ ae t ionA(XA,X  A') (1) 
and 
3 x .  ~(x, xA)^ in i t (x )  ~ initA(x ~) 

is an abstraction or more precisely a ~-abstraction of Prog. 

When verifying composed programs, it is interesting to compute an abstract program 
compositionally, i. e., by composing abstract component programs. From a more general 
result given in [GL93a], we obtain the following result which is sufficient for the verification 
of the distributed cache memory system in the following section. 
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Proposition1. Let P1 and P2 be programs and Qi total functions from the domain of 
the variables of Pi into some abstract domains such that P1 f~ ~2 is total and P ( ,  P2 a are 
el'abstractions of Pi, then pA I~ P2 A is a (~1 N #2)-abstraction of P1 I~ P~. 

Computation of abstract programs in practice : The idea of abstract interpretation [CC77] 
is to replace every function on the concrete domain used in the program by a corresponding 
abstract function on the abstract domain, and then to analyze the so obtained simpler 
abstract program instead of the concrete one. Consider the program Prog a obtained 
by replacing every basic predicate op(X, X ' )  on the concrete variables by a predicate 
op a (X a ,  X a') on the abstract variables is a e-abstraction of P rog if, instead of (1), for 
every basic operation 

3 X 3 X '  . # ( x ,  x a ) A e ( X t , X A t ) A o p ( X , X  t) ~ o p a ( x A , x  a') (2) 

holds. If the expressions in Prog are negation free (as in our buffer), then Prog a is in 
fact a ~-abstraction of Prog. The definition of abstract predicates op A is the only part  of 
our verification method which cannot be fully automatized. But as we will see, we only 
need a restricted number of such abstract operations in order to verify a whole class of 
programs. For example, in the domain of protocol verification, the used data structures 
are "messages" on which no operations are carried out, "memories" or "registers" in which 
data  can be stored, integers which are mostly used as counters and "buffers" with the 
usual operations add, tail, first, . . ,  as in our examples. In [CGL91] a similar method is 
proposed. 

Example 2 An abstract lossy buffer. To illustrate the idea, consider again the buffer of 
Example 1. In order to show that  the buffer has the property of "order preservation" 
(see Example 3), it is sufficient to show that  the order of any pair of elements (el ,  e2) E 
elem x elem is preserved. All the information we need about the content of the buffer B 
is, if and in which order, it contains the elements el  and e2. Furthermore, as each element 
is supposed to be put into the buffer at most once, we need not distinguish amongst the 
valuations of B containing el more than once. Similarly, for the input variable e we only 
need to distinguish if its value is e l ,  e2 or any other value. Concerning the value of E 
determinating which events push(e) are still allowed, we only need to know if the event 
push(el), respectively push(e2) is  still possible or not. This leads us naturally to the 
abstract domain defined by the abstract variables, 

eA : elem~A = {0, 1,2} 
EJ, E~ : Bool 
BA : buf fer~ = {e, el ,  e2, e l  * e2, e~ * e l ,  •  

and the following abstraction relation #2 defining the correspondence between the concrete 
and the abstract variables 

p2(e, E, B, Ca, (E l ,  E,~), BA) 2 2 = LOdem(e, ea ) A ~o, et..ol_etem(E,(E.~,E~) ) A 
~ulSer(B, BA) 

where for e : elem and eA : elem~ 

~ ,o~(e ,  ea)  = ( (ca  = O) -- (e r { e l , e~} ) )  ^ 
((ea = 1) ---- (e = e l ) )  ^ 
((CA = 2) -- (e = e2)) 

for E : set of elem and EJ, EA 2 : Bool, Ej  expresses that ei has not occurred yet: 
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~=,a_of_e,er~(E, El, E]) =((E l = 3E' . allowed(el, E, E') A 
((E~ = 3E' . allowed(e2, E, E') 

and for B : buffer of elern and BA : buffer~ 

BA) = 
((BA = e) = empty(B]{e,,e2})) A ((BA = el * e2) --= (BHe ,,e2} = el  �9 e2)) A 
((BA = el )  ~ (BHel,e2} = e,))  A ((BA = e2 *e l )  = (B]{e,,e2} = e2 *e l ) )  A 
((BA = e2) =-- (Bi{e~,e2} = e~)) A ((BA = .L) in all other cases )) 

where Bl{e,,e~} is the buffer B restricted to the dements  e l  and e2. In order to construct 
an abstract program, we have to define abstract predicates for all the basic predicates 
used in the concrete buffer program, such as allowed, add, tail, unch,  etc. 

In the case that  every abstract variable is related to a single concrete variable, the ab- 
stract predicate associated with unch(v)  is obviously unch(VA) for any abstract variable 
vA related to v. The following abstract predicates satisfy the condition (2). 

allowedi(eA, (El, E~), (E l ' ,  E~')) = ( E  l '  = E l )  A (E~' = EA 2) A (CA = O) V 
(z] A  EI') A (G -- G')) ^ = i) V 

(El =_ El') A (E~ A -,El'))) A (CA = 2) 

add~A(BA, CA, B~) = (BA --- BIA) A (CA = O) V 
(BA E {e, e2}) A (B~ = el  �9 BA) V (B.4 ~' {e, e2}) A (BIA = ..L) A (eA = 1) V 
(BA E {e, el}) A (B~! = eB �9 BA) V (BA r {e, e l})  A (B E ~- _L))A (eA = 2) 

tail~A(BA, eA, B'A) =(BA = B'A) A (eA "- O) V 
((BA ~ {el,el .e=}) ~ (BA = BtA *el)) A (eA = i) V 
((BA e {e=,e2 *el})  =:> (BA = B~ *e2)) A (eA = 2) 

e. ptu (BA) ---- = r 

first~(BA, eA) =(eA = 0) V 
(BA ~ {e , ,  e l  * e~, _L}) A (eA = 1) V 
(BA E {e2,-L}) A (CA = 2) 

tail is an example of a predicate defining a function on the concrete domain, but which 
is nondeterministic on the given abstract domain; tail2A ( i ,  1, B'A) necessarily evaluates to 
true for any value of B~ (the value of the buffer in the next state). 

Using these abstract predicates, the definition of a program representing a ~-abstraction 
of the buffer program becomes trivial. We just replace variables by corresponding abstract 
variables and every occurrence of a predicate by corresponding abstract one. The result- 
ing abstract program looks almost as the concrete program but  defines a very smM1 finite 
transition system. 

The useful abstractions are often obtained by using this kind of abstract domains. Here, 
we gave in detail the more complicated abstraction of a buffer particularizing two different 
data elements. But often, it is sufficient to particularize in the same way a single data 
element. The corresponding abstraction relations ~ern, e~a-of_e~em, gluffer and abstract 
predicates allowed 1, addS, tail~A,.., can be defined by simplifying the above definitions 
in an obvious manner. For the verification of the cache memory we use also existential 
abstractions of buffers. The corresponding abstract predicates adde~(eA), taileX(ea),... 
necessarily evaluate to true if eA is an allowed value of the existentially abstracted buffer. 
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2.3 Tempora l  Logic 

It remains to recall the definition of temporal logic. Here we restrict ourselves to subsets 
of CTL* [EH83] for the expression of properties. The preservation results in [LGS + 92] are 
given for subsets of the more powerful branching time/~-calculus augmented by past time 
modalities. 

Defini t ion2.  CTL* is the set of state formulas given by the following definition. 
1. Let 7 ) be a set of atomic (a) state respectively (b) path formulas. 
2. If ~b and r are (a) state respectively (b) path formulas then r A r r V r and -~r are 

(a) state respectively (b) path formulas. 
3. If r is a path formula then Ar  and Er are state formulas. 
4. If r and r are (a) state or (b) path formulas then Xr r162  and r162 are path 

formulas. 

As usual, we also use the abbreviations Fr  denoting trueH~b and Gr denoting r 
H is a strong and YV a weak "until" operator, a sequence satisfies r162 if r holds up 

to some point in which r holds, and r162 expresses the same property and moreover the 
obligation that such a point satisfying r exists. That means that U and W are duals by 
inversing the arguments: r 1 6 2  = -~(-,r162 

VCTL* [SG90] is the subset of CTL* obtained by allowing negations only on atomic 
formulas and restricting Rule 3 by allowing only the universal path quantifier A. 

The semantics of CTL* is defined over Kripke structures of the form M = (S, 27) where 
S= (Q, R) is a transition system and 27 is a interpretation function mapping elements of 
7 ) into sets of states of S. 

Defini t ion3.  A path in a transition system S is an infinite sequence 7r = qoqz.., such 
that for every i E A f �9 R(qi, qi+l). We denote by 7rn the nth state of path lr and by a -n 
the sub-path of 7r starting in its nth state. 

Defini t ion4.  Let be M = (S,27) a Kripke structure, q E Q and 7r a path of M. Then 
the satisfaction ( ~M ) of CTL* formulas on M is defined inductively as follows. 

1. Let be p E P.  Then q ~M P iff q e Z(p) and 7r ~M P iff 71" 0 E ~(p). 
2. Let r and r be (a) state respectively (b) path formulas. Then, 

(a) q ~m -~r ~=M r  ~M C A r  ~M C a n d q  ~M r  ~M C V r  
q ~M r  ~M r 

(b) analogous by replacing q by 7r 
3. Let r be a path formula. Then, 

q ~M A(~ iff for every path r starting in q, 7r ~M r and 
q ~M E(~ if[ there exists a path r starting in q such that 7r ~M r 

4. Let r and r be (a) state respectively (b) path formulas. Then, 
(a) 71" ~M Xr if[ 71" 1 ~M r 

r ~M r162  if[ there exists n E A/" such that r .  ~M r and Vk < n . 7rk ~M r 
rr ~M r 1 6 2  iff for all n e Af.  ((Vk < n .  7rk ~M - 'r  implies rn ~M r 

(b) the same definition obtained by replacing in (a) all states ri by subsequences r i. 

We say that M ~ r iff q ~M r for all states of M. 

From the more general results given in [LGS+92] we obtain the following proposition 
concerning preservation of properties of VCTL*. 
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P r o p o s i t i o n  5 P r e s e r v a t i o n  of  VCTL*. Let Prog be a program, ~ a total relation from 
the domain of Prog into some abstract domain, and ProgA a e-abstraction of Prog. Then, 
for any r EVCTL*, P the set of atomic formulas occurring in r and I an interpretation 
function mapping 79 into sets of states of Sproa, we have 

Im[e -1] o 1mini o Z (p) C_ I (p) (*) for all p E 7 9 occurring positive in r 
implies 
(SProg~,Im[~]oZ)~r ~ (SP,oa,Z)~r 

where Im[e] is the image function ore. Condition (*) is called consistency ore with Z(p). 

This proposition expresses that, if r E VCTL* holds on a ~-abstraction of the program 
Prog by translating the interpretations of all atomic propositions occurring in the formula 
by Ira(e) into predicates on the abstract domain, and if all these predicates are consistent 
with ~, then we can deduce that r holds on Prog. Consistency is not needed for predicates 
that  occur only negated in r as Im[e-1](Im[e](Z(p))) C I(p). We conclude that, i f r  holds 
on ProgA using the abstract interpretation of -~p (Im[e](I(p))), then a stronger property 
than r using the concrete interpretation of-~p (I(p))  holds on Prog. In particular, for 
the verification of a formula of the form init==~r init need not to be consistent with ~. 

Example 3. The property of order preservation can be expressed by the following set of 
formulas on the set of "observable" atomic predicates 

79 = { init, enable(push(e)), after(push(e)), enable(pop(e)), after(pop(e)), ...}, 
where enable(l) is interpreted as the set of states in which event l is possible, and after(l) 
those in which t has just  occurred - -  after(t) becomes expressible by adding an explicit 
boolean program variable after_s which is true exactly after any event l .  

Ve',e E elem : init 0 A( [-~after(push(e))Wafter(push(e'))] 
[-~enable(pop(e))Wafter(pop(e'))] ) 

These formulas can be transformed into VCTL" formulas in which only the predicates 
after(push(e)) and after(pop(e')) occur non negated. In order to verify that  the concrete 
buffer program has the property of order preservation, it is sufficient to verify the formula 
obtained by instanciating el  for e and e2 for g on the abstract program defined in 
Example 2. In fact, as el  and e2 represent an arbitrary pair of data values, this verification 
of a single representative of the set of formulas is sufficient. It is easy to obtain the 
consistency of predicates of the form after(g) by not abstracting the variable after_s In 
the sequel we suppose, without mentioning it explicitly, that for every predicate after(g) 
occurring in the considered formula such a variable is defined. 

3 V e r i f i c a t i o n  o f  a d i s t r i b u t e d  c a c h e  m e m o r y  

3.1 C o n c r e t e  a n d  a b s t r a c t  spec i f i ca t ion  o f  a s e q u e n t i a l  c o n s i s t e n t  m e m o r y  

Now we use this verification method for the verification of a particular distributed cache 
memory which has been presented in [ABM93] and verified using different methods in 
[JFR93, DGJ+93]. The cache memory is a system of the form P1 III/92... III P-  where each 
process Pi is defined as in Figure 3.1. the predicates add, tail, first and empty are as in 
the Example 1 and update is defined by 
update(m, (a, d), m') _= (m'[a] -- d) A (Vb: address. (b ~ a ~ m'[b] = m[b]) ). 
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Variables : Input : a : address, d : datum 
local : ADi : set of address x datumi, (data already written) 

C I :  array[address] of datum LI {e} (local cache memory) 
Outi : bu f fer  of (address x datumi) 

shared:  M :  array[address] of datum (global memory) 
Ink : bu f fer  of (address x (datum kJ {e})), k : index 

Transitions : 
(write~(a, d)) 

(readi(a, d) ) 

(mwi(a,d))  

(cui(a,d)) 

Init : 

allowed( (a, d), ADi, AD~) A add( Outi, (a, d), Out~) A 
unch(Ci ,  M, In1, ...Inn) 
(Ci[a] = d) A empty(Outi) A empty(Ini ladd~,,, • 
unch(Ci ,  Outi, ADi, M, In1, ...Inn) 
f irs t (  Outi , ( a, d) ) ^ tail( Outi , ( a, d), Out~) ^ update(M, ( a, d), M') A 
Vk : index,  add(Ink, (a, d), In~) A unch(Ci ,  ADi) 
f i rs t ( Ini ,  (a, d)) A tail(Ini, (a, d), In~) A update(Ci, (a, d), C~) A 
unch(Outi,  ADi, M, {Inj,  j ~ i}) 

(Vb: address.  (Ci[b] = M[b] = e)) A empty(Outi) A empty(Ini)  

Fig.  1. A distributed cache memory system 

The event writei(a, d) does not have any immediate effect neither on the local nor on the 
central memory, but pushes the pair (a, d) into the local buffer Outi ; from there it is by 
the internal event memory_writei(a, d) written into the central memory and dispatched 
into all buffers Ini; the internal event cashupdatei(a,d) takes the first element (a,d) 
out of Ini and writes datum d into address a of the local cache memory Ci. The event 
readi(a,d) is possible only if Ci[a] = d and no local write event is pending, i. e., if 
empty(Outl) A empty(Inilaadre,,• The only difference between our system and 
the one used in [JPR93] concerns the fact that each pair (a ,d)  can be the parameter 
of at most one event write. The way we obtain this, is by defining the type datum by 
datum = Ui datumi, such that each process "signs" the data  it writes, and by using in 
each process a variable ADi of type set of address • daturni which stores the information 
if the event writei(a, d) has already occurred or not, as in the example of the buffer. 

The abstract specification that the system must verify is sequential consistency [Lam79], 
which originally is given in the form of an abstract program. In order to apply our method, 
we give the abstract specification in terms of a set of properties. Under the assumption 
that  every pair of the form (a, d) can occur at most once as the parameter of some write 
event, sequential consistency can be characterized by the following set of properties ex- 
pressed in terms of observable events: 

Safety properties characterizing a sequential consistent memory: 

(sl) V(a, d), (a t, d ~) : address x datum, j, i : index such that (a, d) r (a', d') 
init =~ A([-~after(writej(a,d))143after(writej(a',s ] 

[-,enable( readi( a, d) ) W (  enable( readi ( a', d'))V 
AG(-~enable(readi(a',  d')))) ] ) 

(S2) V(a, d) : address x datum, i : index 
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init :=~ A(~enable(readi(a,d))WVj:inde~: af ter(wri te j(a,d))  ) 

(S3) V(a, d): address • datum, i: indez 
init ~ AG(af ter(wri te i (a ,d))  =:, 

A((enable(readi(a)) ~ enabte(readi(a,d)))WAG(-enable(readda, d))))) 

(S 4) V(a, d), (a, d') : address • datum, il, i2 : index such that  d :~ d' 
init ~ A( [-,a/ter(readi,(a,d))Wayter(readi,(a,d'))  ] =r 

[-~enabte(read,~(a, d) ) WAG(-~enabte(read,~(a, d') ) ) ] ) 

(S1) expresses that in every execution sequence the subsequence of readl events respects 
the order of writej events: whenever (a', d') is written before (a, d) by Pj, then readi(a, d) 
is not enabled before either readi(a', d') has already been enabled or is never enabled 
again (the second clause is necessary because readi(s s  may never be enabled in some 
computation sequences). ($2) expresses that  every readJa, d) event is preceded (caused) 
by some writej(a, d) event. This is slightly stronger than sequential consistency which 
may allow writej(a, d) to occur after readi(a, d). ($3) expresses the fact that  readi and 
writei events od the same process Pi must be consistent with a central memory, i. e., after 
a writei(a, d), Pi can read nothing different from d in address a until readi(a, d) is never 
enabled again. ($4) expresses analogously to (S1) the fact that  read events concerning the 
same memory cell must be consistent in all processes. All these formulas can be translated 
into VCTL* formulas. 

3.2 Ver i f i cat ion  o f  t h e  cache  m e m o r y  

We verify each parameterized set of formulas on a different abstract program. Our aim 
is not to find the smallest abstract program that  can be used for the verification of each 
formula, but we want to apply, whenever possible, the already predefined abstractions in 
order to show that the application of the method is simple and can be done systematically. 
The cache memory uses the data types and operations of the buffer of Example 1; it 
uses also a data type "memory"= array[address] of datum. As for buffers, we use three 
different types of abstractions of a variable X of type memory depending on the formula 
to be verified: we may 

- completely forget about it (we do this always for the central memory M) 
- keep information about a single pair (a,d) by taking an abstract boolean variable XA 

and an abstraction relation i r . . . . . .  y (X ,XA)  = XA -- (X[a] = d). 
- keep information about two pairs (a i ,  d i )  and (a2, d2) by taking two abstract boolean 

variables X~ and X~ and an analogous abstraction relation Qrnernory2 (X, XA,1 XA).2 
Suppose the type elem to be address • datum and take an abstract variable eA of type 
elemiA = {0, 1} already used in the buffer example and the abstraction relation 

Q~lem((a,d),eA)=(eA =O) A((a ,d)  # (a,d)) V (CA = l) A ( (a ,d ) - - (a ,d ) ) ,  
exactly as in Example 2; then, it is easy to define an abstract predicate updateiA by 

updateiA(XA,eA,A"A)=(eA = 0 )  A(X~t =r XA) V (cA = 1) A X ~  

expressing that  if (a, d) ~ (a,d),  X[a] --- d is only possible in the next state if already 
in the present state X[a] = d, and if (a, d) = (a,d),  then in the next state X[a] --- d, 
independently of the value of X[a] in the present state. 

Using these definitions (and analogous ones with superscripts ez and 2) and those 
already given in Example 1, the definition of appropriate abstract finite state programs 
of the cache memory becomes simple. 
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Abstract programs for property ($3): Each instance of property ($3) involves only events 
of a single process Pi. However, even if we succeed to verify it on Pi we can not deduce 
their satisfaction on the composed system. In fact, if we replace all processes different 
from Pi by the process "Chaos", ($3) does not hold any more on the composed abstract 
program. We use here another approach to compositionality: by Proposition 1, we can 
abstract  each Pj individually and build a global model by composing these small abstract 
programs. We choose the abstraction relation for all Pj with j ~ i in such a way that  
shared variables are abstracted in the same way as in Pi and we forget about all local 
variables; this has as effect to avoid adding certain changes of shared variables which are 
not allowed by the concrete programs Pj. 

Intuitively, ($3) expresses that  as soon as writei(a,d) has occurred, only d may be read 
by Pi on address a until d has been put into Ci and afterwards been replaced by some 
other value; that  means that  we are interested in observing what happens on the buffers 
Outi and Ini and the cache Ci.  The actions (mwj) should not disturb the behaviour of 
Pi observed by ($3) because they cannot push (a,d) into Ini. This leads naturally to the 
following abstraction relation for Pi: 

#~a( (a, d), ADi, Ci, Outi, M, In1, ...Inn, ca, Ea, CiA, Outla, Inia) = 
~Item ((a, d), eA) A #~et_ol_elem(ADi, EA) 
e~ . . . .  y(ci, C~a) ^ Q~s~r(Out~, Out,a) 
e~ufle, ( Ini, Inia) 

A 
A 

and for Pj,  j ~ i we use the same abstraction as in ~i for the shared variables and forget 
about all local variables 

o]S((a, d), ADi, Ci, Outl, M, Inl .... , Inn, ca, Inia) = 
1 ~,.~((a, d), cA) ^ ~.Z.r(1",, Inia) 

from which we obtain by replacing concrete by corresponding abstract predicates as de- 
fined before, the following abstract program p/A for index i, 

Variables : abstract  input : ea : Bool 
local : EA, CIA : Bool 

Outla : bu f f erla 
shared : lniA:bufferla 

Transitions : 
( writei ( ea ) ) 
(read,(ea)) 

(mw,(ea)) 

(c~,~(ea)) 

Init : 

allowedla (eA, EA, EA') ^ addla ( OutiA, ca, OUt~A ) A uneh(CiA,  IniA ) A 
( eA =~CiA ) A emptyla ( Outia ) A emptyXa ( IniA ) A 
uneh(Ea ,  Cia, OutiA, IniA ) 
firstla(OutiA, CA) A tailla(OutiA, CA, Out'a) A 
add~a(Inia, ca, InCa ) A uneh(CiA, EA) 
firstlA(lnia, ca) ^ tailla(IniA, ca, In~a) A updatela(CiA, CA, C~A) ^ 
uneh(EA, OutiA) 
-,Cia A empty~t(OutiA ) A emptYla(Inia) 

and pA for all indices different from i, 
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Variables : abstract input : eA : Bool 
shared: Inia : bu f f er~ 

Transi t ions:  (writej(ea), readj(ea), cuj(eA)) 
(~wAea)) 

!nit : empty~(Inin) 

uneh( Inia ) 
firsteA*(eA ) A addlA( Inia, ea, InCA ) 

m which we have already eliminated all abstract operations that  are always true, such as 
addeA x, updateeA~,.... Notice that  the event (mwj(true)) is never executed as firsteAX(~rue) = 
false because the buffer Outj cannot contain the pair (a,d) as d E datumi. Notice also 
that  the size of the composed system P r  ~... | pA ~... ~ p ~  is the same, whatever the 
number of composed programs is, as for all j :~ i, the programs pA are identical and 
P ~ P and P represent the same transition system. 

Abstract programs for property ($2): Property ($2) expresses the fact that  any event 
read/ (a ,d)  is preceded by an event writej(a,d) for some j .  Thus, we are interested in 
observing the buffers Outj and Inl and the cache Ci. This leads to similar abstraction 
relations as for the verification of ($3), except that  we do not need the unicity of the write 
events and can forget about ADI but we need abstract buffers OutjA for all j .  Thus, all 
abstraction relations gf2 are the same: 

Q~2(A, D, ADj, Cj ,  Outj, M, In1, ..., Inn, cA, OUtjA,  I n iA )  : 

a~ze,n((A, D), eA) A ~,11~r(Outj, OutiA ) A 
e~ulfer (Ini, Inia) 

For this abstraction, the size of the obtained global abstrazt transition system does depend 
on the number n of processes as we have defined n abstract variables Outja. In order to 
obtain an abstract transition system such that  its size is independent of n, we can define 
- -  instead of the set of local abstract buffers Outja - -  a single global abstract buffer Outa 
defined by a relation of the form 

Lol,glob [ 

j :in dex 

which obliges however to redefine the abstract operations addA, tailA,... 

Abstract programs for properties ($1) and ($4): For the verification of (S1) we need to 
observe events with two different parameters (al ,  d l )  and (a2, d2), such that  d l ,  d2 6 
daturnj; thus, we use the abstraction relations with superscript ~ as for the verification 
of order preservation in the preceding section. We define abstract variables E~, E~t (in 
pA) in order to guarantee uniqueness of the observed writej events, OutjA (in pA),  
Cil ,  Ci2 (in pA) and a global variable IniA and use the predefined abstraction relations 
and corresponding abstract operations. 

The resulting global abstract transition system is again independent of the number of 
process as all the abstract programs with indices different from i, j are identical. We need 
only to consider the case where the indices i and the j are different, as the property for 
i = j is implied by ($3). 

Property ($4) expresses that  the sequences of read events of any two processes P/I 
and Pi2 on the same address a are compatible, also when they have been written by two 
different processes Pjx and PJ2. Thus, for its verification we observe two pairs (a l ,  d l )  and 
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(a2,d2) such that al = as = a and dl  E datumjl and ds E datumj2. Consequently, we 
need abstract variables E~, E~ (in pjA respectively pjA), Outj,A, Outj2A (in pA respec- 
tively pA), Ci,1, Ci,s (in pA), Ci~l, Ci22 (in pA) and global variables InilA and Ini~A. 
Here, we have to consider different cases, those where the indices il and j~ (respectively 
is and is) coincide and those where not. 

Now, the verification of the distributed cache memory is almost terminated. The ac- 
tual construction of global abstract transition systems and the verification of the formulas 
on them could been done automatically by our tool [GL93b, Loi94]. By Proposition 5, it 
remains to verify the consistency of the atomic propositions with the used abstraction re- 
lations. Properties (S2) and ($4) pose no problem, as in the corresponding VCTL* formulas 
only predicates of the form after(g) occur non negated. For ($3), in principle the con- 
sistency of enable(readi(a,d)) is required; however, it is used only within the predicate 
(enable(readi(a))~enable(readi(a,d)) which is equivalent to Ci[a] = d and consistent 
with the abstraction relation used for ($3). For (S1), it is slightly more complicated 
to show that the consistency of enable(readi2(a2,ds)) with the considered abstraction 
relation e is not needed. The predicate obtained by translating enable(readi2(as,d~)) 
forth and back by Q is Ci2[as] = ds A ... The property obtained from (S1) by replacing 
enable(readi2(a2, d~)) by this weaker predicate, implies nevertheless (S1) for our partic- 
ular system, because enable(read~2(al)~((Ci[a2] = d2)~enable(readi2(a2,d2))) holds. 
Notice also, that this additional condition is in fact necessary in order to obtain sequen- 
tial consistency of the given system. 

4 D i s c u s s i o n  

What have we achieved? A first impression could be that our verification of a cache 
memory looks much like any other handwritten proof. However, it is quite different: 
starting right from the beginning, it is in fact rather lengthy to define all the abstraction 
relations and corresPonding abstract predicates, even in order to verify some trivial buffer 
program. However, having done this once, in order to verify the much more complex cache 
memory system, we only need a few more definitions obtained a long the same line as the 
already given ones. In fact, there are many examples of systems, for which we have to 
verify exactly the same type of properties and which use analogous data structures and 
operations on them, such that the same abstract domains and operations can be used. 
Thus, we could build a "library" of useful abstract domains and operations in which new 
definitions can be added when necessary. A similar approach has been followed by P. and 
R. Cousot and D. Long concerning "standard" abstractions of integers and operations on 
them. 

The fact that for the verification of an individual property a large part of the system 
can be abstracted existentially is often necessary in order to obtain tractable global mod- 
els. If the system is too large or the property is "too global" one can often get results by 
decomposing the property, as this has been proposed, e. g. in [Kur89]. 

It can also been observed that our verification method is incremental: it is obviously 
incremental with respect to changes in the abstract specification, like every method based 
on the fact that abstract specifications are expressed by a set of properties. But also certain 
changes of the program allow to use the same or at least very similar abstraction relations 
and abstract operations. That means that exactly the time consuming and difficult part 
of the verification process need not to be redone. In the case that the obtained abstract 
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program is not identical to the previous one, the reconstruction of a model and the 
verification of the properties on it by means of some model checker poses no problem. 

An important point for the use of our method in practice, is the formalisms used for the 
description of programs. We either need a formalism allowing to express nondeterminism 
or we have to use more complex abstract domains allowing to represent certain sets of 
classes of concrete values. For example, LOTOS is a specification formalism for which 
this method can be applied: all the data types and operations on them are specified 
separately from the control part by means of some "abstract data type" language. This 
means that, by coding whatever should be abstracted in the data part, to construct an 
abstract program consists simply in replacing the original data type definitions by simpler 
ones, whereas the control part of the program remains completely unchanged. 
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