An Active Meta-model for Knowledge Evolution in
an Object-oriented Database

Z. BELLAHSENE
LIRMM
UMR 9928 CNRS - Montpellier 11
161 rue ADA 34392 Montpellier Cedex 5
France
e-mail : bella@lirmm.fr

Abstract. It is not reasonable to consider that a single data model can be
adequate for any application.There are many data models; each of them has
its advantages and drawbacks. Building up an other model does not make
sense in the actual state of research in the database ficld.

Our approach consists of a proposal of a meta-model providing an open
environment to allow knowledge evolution in object-oriented database
systems. Knowledge cvolution means updates on database schema:
propagation of updates from schema to instances and dynamic propagation of
views update operations. Furthermore this meta-model enables the extension
of data model concepts by modifying their semantics. By modifying and
extending these model, it can be tailored or customised to suit various
application domains.

Keywords : Object Oricnted database, inheritance, meta-model, schema
evolution, active database,...

1. Introduction :

Object-oricnicd databasc technology is coming to maturity; many Object-Oricnted
database Management Systems (OODBMS) are commercialised (Gemstone, ORIONII,
02, ONTOS,...). They have acquired better productivity and program maintainability and
advances in the user interface arca from object-oriented languages and sofiware
engineering. The most significant feature of object-oriented databasc systems is their
solution for the impedance mismatch, provided by encapsulation which embodies data and
programs(i.c methods) in the same object. The ability of OODBMS to build application
systems in new fields such as CAD, CAI, multi-media databases and geographic
information systems, hides some limitations due to a lack of flexibility. This concerns
schema evolution which is a very important fcature in such applications because of the
manipulated objects own permanent dynamic nature. Most of OODBMS provide schema
evolution facilitics, but they seldom support automatic propagation to the object
instances. Furthermore, these systems have not been developed with extensibility as a
key goal.

40

While the notion of meta-level knowledge is well known in Al, very little litcrature on it
has produced in the databasc ficld. The main idca is 10 view cvery knowledge
representation in the system as an extended data type and write explicit description of cach
of them. Our approach provides a mecta-level and to allow a specialized user the
modification of its own data model to {it with specific application domain.
The primary focus of this work is (o provide data model extensibility through the explicit
represcntation of their semantics, Furthermore, the major features of this meta-model are :

- Performing automatic propagation of updates from schema o instances,

- Performing automatic propagation of view updalc operations,

- Allowing data model semantic concept modification.

In this paper, the problem of schema evolution has been studied according to a modelling
point of view rather than a softwarc one. Our approach is more flexible than the software
one because it is easier to add to or modify representations and operations of "meta--
objects” than of programs. Our meta-model integrates the Event-Condition-Action
mechanism [8] to take into account the dynamic aspect of the meta-model and therefore
deals with the automatic propagation of update operations to the databasc schema and ils
instances. For instance, in the schema evolution context, it cnables declarative description
of the legal change opcrations on a schema and on the corresponding instances. When one
of these change operations is cxccuted the system must trigger the update on instances
without user intervention.

The remainder of this paper is organised as follows. Section 2 describes the study context :
the object-oriented featurcs. We give an overview of our meta-model in section 3., In
scction 4, we show how Lhe meta-model can be used in the schema evolution context. In
section 5, we study the implementation of the propagation of update operations to views.
A summary and discussion of future rescarch are provided in the last section.

2. The object context

In this section, we review the principle concepts of the object-oriented data models [1],
[3,...

Object ;

The concept object is akin to that of entity when it covers scmantic aspects. An object is
defined through the sct of attributes that characterize it and the operations it supports. In
the field of database, the concept of "object” allows one to model the propertics and the
behaviour of an entity. An object has an identity that is independent of its value. This
implies that the equality and identity operators on objects are different [7].

Class

The concept of class allows the grouping together of objects which have the same data
structure (attributes) and the same operations calied methods. A class is generally described
by names, its attributes and methods. Classes are organised in a hierarchy of inheritance.
Example: here is a class deflining a Person in DDL of the O2 system that we use in our
implementation [12].

class Person
type tuple (name : string,
birth_date: Date,

41

address: tuple (road : string, city: string, zip-code : string))
mcthod
age: integer

Inheritance

Inheritance is a mechanism that allows the factorization of the parts common to several
classes. Regarding modelling, the inhcritance cnables one to refine the definitions of
object classes by introducing a specialization/gencralization link, There are several types
of inheritance, the best known are : simple and multiple inheritance. The former
corresponds to a class hierarchy : each class that is at the ith level of the inheritance tree
inherits the attributes and methods of the parent-class at the (i-1)th level (called
superclass). In the case of multiple inheritance, classcs arc arranged in a graph (without
cycle) : a class can then inherit from several superclasses. However, when the mechanism
of multiple inheritance is applied, a conflict of inheritance may arise when the classes
involved contain attributes or methods that have the same name. Several strategies to
solve this kind of conflict have been suggested [10], [15].

3. The meta-model

In this section we present the basic concepts of our meta-model.We emphasize here the
active and evolutive aspects of the meta-objects. Meta-data in database systems includes
information on schema, constraints and view dcfinitions. Our mcta-model is designed to
model and manage the data model concepts. The [ollowing {igure represents a database
architecture with three levels of abstraction. Each of them can be viewed as an instance of
its upper level.

the meta-model

Meta-level the data model

conceptual level. the database schema
application the databasc instances
level

Fig 1. Levels of abstraction in a Database

3.1 The meta-model concepts

Its principles are based on the meta-class structure and the explicit representation of typed
relations that link data model concepts. Furthermore the considered relations are types of
dependency relations. Also, the meta-model integrates the ECA mechanism [5] to make
the meta-objects active. The ECA rules will allow declarative description of the activation

42

condition by specifing cvents and actions o be exccuted in order to preserve the coherence
of the dependency relations and to implement update propagation.
The primary conccpts of our meta-model are
.The E-meta-class, which can model every data model concept (for example class,
instance,...)
.The R-meta-class is dedicated to representing Lhe inter-concept links : aggregation,
generalisation, inheritance and the following typed relations :
-class_instance (that links a class to its instances),
-instance_class (is the inversc of the former link),
-view_class (existing between a view and classes on which it is defined)
-class_view (link between a class and the views delined on it)

The meta-schema is a generalization hierarchy that indicates the global organization of the
meta-model and what categories of concepts exists in the data model and the relationships
between them. It makes cxtensive use of the concept of inheritance in the role of inter
concept link. All the meta-objects are described by meta-classcs while the inter-concept
link is modelled by an R-meta-class. The following figure describes the meta-schema of
our meta-model. The root of the meta-classes hierarchy is "OBJECT" and mcans that all
concepts are objects in the meta-model. However there are two types of objects : the
predefined objects (integer type, float type, string,...) and the abstract objects which are
user-defined objects or concepts of the data-model. The meta-class "class” enables
representation of the high level constructs of a data model, for instance the concept of
class of the object-oriented data model or the rclation concept of the relational data model.

N

Abstract object predefined
object

string integer

E-meta-class ﬂﬁiﬂﬂ-—\ R-meta-class

atached] \ |inhm;w“

view l - .
s aggregation gencralization
e
method
seipf methods ‘ attached_to
defined_on class

Legend:
—p specialization
=== other relationship

Fig. 2. The meta -schema

43

3.2 Extensibility of a data modek:

Extensibility consists of the capability to add to a data model new types of classes and
relationships or to extend the existing classes or relationships. The extensibility is
achieved by modifying the meta-level concept specification. For cxample, the deletion of
the meta-class "method" has as a consequence the change of the semantics of the data
model and means that the data model is not object-oricnied.

Class extensibility

Class extensibility is an extensibility whereby a data model can be extended to provide
new types of classes: extending an existing class or adding a new class. This cxtensibility
is achicved by modifying the meta-schema. For example, if we have to add a new class
type called Z-class, we have only to create a "Z-object” mela-class as a sub-class of the
meta-class "OBJECT" and to add "Z-class” as sub-class of thc meta-class "class”.
Extending existing classes consists of sub-classing the meta-classes corresponding to
such existing class types.

Relationship extensibility

This type of extensibility encompasses data model extensions such as various forms of
inheritance and customised relationships 1o fit a particular domain by sub-classing the R-
meta-classes representing such rclationships. For e¢xample, to add a new type of
inheritance, we have to define a sub-class of the R-meta-class called "inheritance”(see
figure 2).

3.3 The active aspect

The main idea is to consider that the inter-concept relationships in the schema evolution
modelling are dependency relationships.The two types of meta-objects involved in this
kind of relationship are called influential meta-object and dependent meta-object.

The principle of a dependency relationship:When the influential meta-object is
modified then the dependent meta-object must be updated in order to maintain the
coherence dependency constraint .

propagation
change influential dependency : dependent
operations meta-object reldlionship meta-objet
—- e

Fig. 3. dependency relationship

Now the problem is to represent these changes and their propagation to the dependent
meta-objects.

44

ECA rules

The aim of this scction is not to provide an cxhaustive revicw of active database systems
but to introduce the framework of our approach. Research in this arca is conducted by the
HiPAC project [DAYA 88] and by the Postgres database system project [11]. Active
database systems attempt to provide modularity and timely response to critical
situations : "the system is ablc to monitor the situations, trigger the related actions when
the conditions are true and to schedule tasks to mect timing requirements without user
intervention” [8].

The development of active database systems requircs solutions for knowledge
representation, execution, scheduling and performance problems. The issues of these areas
.are considered in the HiPAC project and are not discussed in this paper.Event-Condition-
Action rules (ECA), are a central concept in HiPAC.They provide more flexibility than
simple triggers by specifying events that activale the constraint checking and the actions
to be performed if some constraints are violated.

ECA rules are implemented as objects. An ECA rule consists of the following elements;
Event : the role of the event part of an ECA rule is to activale the condition part. It
describes temporal events, database opcrations (data definition and data handling,
transaction control) or signals from processes.

Condition : a condition is defincd as a sct of querics that are evaluated when the rule is
fired.

E-C coupling mode specifies when a condition is evaluated according to the transaction in
which the trigger has been reporied.

C-A coupling mode specifics when an action is done according to the transaction in which
the condition is evaluated.

Action : is a sequence of operations to be executed when the rule is fired and
thecondition is satisficd.

The dynamic aspect of our meta-model lies in thc R-meta-class activation points, which
arc implemented as ECA rules.
The R-meta-class structure (representing a dependency relationship between two meta-
classes) is specified informally as follows. It is composed by:
- context ; (influential_object : meta-class_type, dependent_object : meta-
class_type)
- Activation Point =
- E : event that activates the condition (update database operations)
- C: condition that must be satisfied
- A : operations or program to cxecute when the conditions arc true

The context part defines the set of the meta-objects that are linked by this dependency
relationship. When the events corresponding to change operations are activated and if
related conditions arc true then the attached actions are cxecuted to achieve propagation to
the dependent object.

Here is the specification of an R-mela-class in Data Description Language of O2 DBMS
[12], according to the mcta-schema defined in the figure 4. This implementation is
inspired from Smalltalk. From each meta-object, a list of dependent meta--objects can be
accessed via the dependent link (i.c the attribute privatc_dcpendents).

class R_meta_class
type tuple (private _dependents: unique set (Object1))
method

45

public addDependent (anObj: Objectl),
public dependents: unique set (Objectl),
public releascatl,

end;

4. A proposal for modelling schema evolution

In this section we first review some schema evolution possibilitics provided by some
object-orientcd database systems. Then we will present our proposal for modelling the
change operations on schema and their automatic propagation.

4.1 Schema evolution in object-oriented database systems

This sub-section is not a comprehensive study of existing rescarch efforts but only a
limited survey of the ability of some OODBMS to support the changes on schema and
their propagation on the object instances. No system provides a full support for object
evolution; most of them support changes in the object definitions. However, few of them
have the ability to propagate these changes 1o the related instances. Because our approach
is complementary to other works done in this domain, we will not make comparisons
with them [2],[9]....

Structural consistency of a schema
In object-oriented database systems there are two basic types of consisiency : namely,
structural and behavioral consistency. The former one refers to the static part of a
database. The behavioral consistency refers o the dynamic part of a database. It ensures
that methods perform the "desired” task [13]. Many object-oriented database systems
(ORION, GEMSTONE) do not support any mechanism for dealing with behavioral
consistency.
Change operations have to ensure that a structurally-consistent schema is produced as a
result of the update operation. Structural consistency is provided by using a set of
"invariants” that define the consistency requirements of the class hierarchy. The main
"invariants” which stemmed from the ORION database system and are now used in most
OODBMS [2], are :
. Class lattice invariant: The sub-class/superclass relationship forms a lattice
having as root the predefined class "Object”,
Distinct name invariant: All instance variables or methods defined or inherited
must have distinct names.
. Distinct identity (origin) invariant; All instancc variables or methods defined or
inherited must have a distinct origin.
. Full inheritance invariant: A class inherits all instance variables and methods
from each of its superclasses unless it defines an instance variable or method with
the same name.
. The compatibility type invariant: If an instance variable V2 of a class C is
inherited from an instance V1 of a superclass of C tthen the type (or domain) of
V2 is either the same as that of V1 or a subclass of V1.
These invariants must be preserved by any change on the schema.

46

Legal schema update operations :

An update operation on a schema is qualified as legal if and only if it ensures production
of a consistent schema. Updale operations on a database schema can be classified in two
categories:

1) Changes to class definitions including :
- add an attribute or method to a class
- delete an existing attribute or method
- change the name of an attribute or the name of a method.
- change the type of attribute
- change the signature of a method or its code

2) Modifying the graph of classes
- add a new class to the graph
- delete an existing class and its links
- change the name of a class
- moving a class in the graph

Propagation of update operations

The problem of schema evolution cannot be limited 1o a set of change operations on the
class definitions. The system must also providc capability to control updale propagation
on the object instances. There are two ways 1o realise updale propagation : in fully
automatic (ORION) or manual (ENCORE) mode.

When propagation is automatic, the delay of effective change propagation to the object
instances has to be defined. Propagation can be performed immediately or can be deferred.
The first mode emphasizes consisiency and information preservation, whereas the second
one allows the database to be available and makes the modification effective at the next
access to the instance.

4.2 Modelling the schema evolution

Most of the OODBMS's provide schema evolution facilities. But they seldom support
automatic propagation to the object instances. Our approach attempts to avoid this
drawback by providing the means to model the schema legal update operations and their
propagation to the associated object instances. The following figure describes the meta-
schema; The stippled areas represent the meta-classes that are used to implement the
schema evolution.

47

Legend:
—» specialization link

Fig. 4. The meta-schema for the schema evolution

. The E-meta-class called "Metaclass" describes the classes. It contains the following
informations about each class : its class name, its superclassses, its attributes, its
dependants links (noted ci) with its instances and its dependant links with other classcs
(noted cc). This implementation is inspired from Smalltalk. From each meta-object, a list
of dependent meta--objects can be accessced via the dependent link modelled by a
R_meta_class (i.e the attribues ci and cc).
The methods of Metaclass are update operations on the classes graph. When they are
executed these methods trigger propagation operations on the schema or on the instances
{which are implemented as methods in R-meta-classes) .The implementation of this meta-
class, in DDL of the O2 system is :
class Metaclass
inherit E_meta_class
public type tuple (class_name:string,
superclasses:unique sct(Mctaclass),
attributes:unique sct{Attributes),
ci:Class_instance ,
cc:Class_view)
method
public init(class=name: string),
/* schema update operations */
public add_attribute (n:string, t; string),
public del_attributc(name:string),
‘public rename_attributc(old_name:string,new_name:string,
mc:Metaclass),

48

public del_class(option:string,mc:Metaclass)

end;
.The E-meta-class "Metainstance" allows dircct access (o the instances of a class. It
includes all the update operations on instances.
.The R-meta-class "Class-class” describes the inter-class relationships of aggregation or
generalisation. Its methods model propagation of update operations to the definition class
(addition, delction of an attribute, ...). They are triggered by the execution of methods in
the E-meta-class "Metaclass”.
.The R-meta-class “class-Inst" represents the relationship existing between a class and its
instances. It includes methods performing the propagation of update operations of class
definition to instances, These methods are triggercd by the exccution of class definition
operations implemented in the "Metaclass”.

Class Class-instance
inherit R-meta-class
method public add_attribute(a: Attribute, me : Metaclass),
public dcl_attribute(name:string, mc:Metaclass)
end;

.The R-meta-class "Inst-class" is the inverse of the preceding relationship. Its methods
perform propagation of the update operation of instances to the corresponding class. They
are triggered by the execution of methods of the "Metainstance”.

Example : Here is an concrete example of schema evolution

first_ name

Person name

student I card_numb

Fig. 5 An example of schema

This example shows a modelling of an operation that alters a schema definition by adding
an attribute in a class. The implementation of this updatc operation uses the R-mela-class
"class-instance" and the E-meta-class "Metaclass”.
1) Creation of the Person class
class Person
public type tuple (name:string, first_name:string)
end;

Person_class = new Metaclass("Person");

The method new of "Metaclass" creales an instance of type Melaclass and calis the
method init to initialize this instance. This method triggers the method add_class of the
R-meta-class " Class_Class” to add this class (Person) in the schema.

2) Adding the attribute age in the Person class

" on:

>Person_class->add_attribute("age”,"integer");

49

The method add_attribute triggers first the add_attribute("age","integer” self) of the
R-meta-class "Class_Class"; this latter modifics the Person class and its sub-class student
by adding the attribute "age". And after that, the method add-attribute of Person class
triggers the add_attribute("age","integer” sclf) of the "Class_Inst" R-meta-class : this
latter adds the attribute "age" in all instances of the Person class and Student class. The
value of this attribute is initialized to NULL.

4.3 Instance evolution and its propagation on the schema

Some rescarch works deal with the problem of schema evolution and the propagation to
the instance level but few of them have dealt with the problem of schema evolution
depending on instance evolution. This fact reveals the rigidity of the DBMS where the
instances must conform 1o their schema. Our mcta-model enables representation and
performing of instance c¢volution and automatic propagation to the schema. This can be
done by describing the relationship that links instances to their class and by including in
R-meta-class specifications, events, conditions on the propagation process and actions.
For example, filling threshold can be defined for classes. These thresholds can be
computed on whole instances or parts of them (attributcs). The following examples of
instance evolution show that our approach is relevant and powerful enough to support
many knowledge evolution criteria.

Here are two examples of typed evolution of the schema corresponding 0 semantic
relationships (generalization, specialization).

Generalization :

The schema evolution in this case consists of creating a new class and a generalization
link. In the following example, instances evolution involves a generalization link
between classes. It shows how an evolution process based on values of some attributes
cnables elimination of null values.

For instance : the class that represents "Students” and possesses an attribute CV for
"Curriculum Vitac". When the amount of null values for attribute CV reaches 50%, a
new class is created that is a generalization of the former without attribute CV. All
instances representing students who have no Curriculum Vitae are attached to this class.
This can be represented as follows :

R-meta-class : instance_class

Context : (1: type_instance_meta-class, C : type_classe_meta-class,)
E : insert instance operation
C:50 % of instances without CV
A : create a super-class and group all instances without CV
End;

Specialisation :

This typed evolution of the schema involves the creation of a sub-class of a given class.
The following example shows an evolution of the schema according to its instances
evolution. The criterion used to trigger the propagation of this evolution is : "If 25 % of
instances belonging to generic class cannot be attached to existing sub-class, a sub-class
must be created to link these instances”. It will be modelled by an R-meta-class that
represents the dependent link (instance_of) between instances and their class.

50

5. Modelling evolution of views

Evolution of views represents one form of schema cvolution [6]. In this section, we will
attempt to show how our meta-model can be applied to implement the view update
operations and their automatic propagation. A novel solution to the problem of view
definition and updating has becn proposed in [4]. The updatc operations on views include
thosc of their schema evolution. Howcever, only operations on the view schema which do
not alter the global schema are allowed.

The following figure introduces the different R-meta-classes and E-meta-classes used to
model the view evolution.

Legend:
-—-—>specialisation link

Fig. 6. The meta-schema of views evolution.

The "Metaview" is the E-meta-class modelling the views. Its methods represent the update
operations on views. The execution of these methods triggers the appropriate propagation
to the instances or the classes. The following decription is conform 1o the view definition
proposed in [4].
The specification of the E-meta-class "Metaview" in DDL of O2 system is :
class Metaview
inherit E-meta_class
public type tuple (view_name:string,
cpdv:Metaclass,
attributes:unique set(label),
condition:string)
method public add_attribute (attr_name:string),
public del_attribute (attr_namc:string),
public add_condition (c:string),
public change_condition (c:string),
public command(c:string)
end;

The R-meta-classes modelling the rclationships between a view and classes are:
- "Class-view" describing the relationship between a class and the views defined on

51

it. Its methods perform propagation operations of update on classcs, to views. These
methods are triggered by the execution of methods in "Metaclass™.

- "View-class" represents the relationship between a view and the classes on which
it is defined. Its methods perform the propagation of update operations on views, to the
corresponding instances.

Activation of propagation of update operations
The execution of an update operation on the databasc activates an appropriate method in
the associated E-meta-class : "Metaclass” or "Metaview" or "Mectainstance”. This method
will trigger the corresponding methods in the R-meta-classes (which perform the update
propagation) : "Class-class" or "class-instance” or "instance-class” or "Class-View" or
"View_class".

Example: There is an example of an update operation on the global schema(the deletion
of an attribute), named del-attribute. The execution of this operation activates another
method in the E-meta-class "Metaclass" which in tum triggers appropriate propagation

operations on the R-meta-classes "class-class”, "class-instance™ and "class-view".

modification of class
definition
maodification

of class
instances

. modification of
del_atlribute views defincd
on this class

Fig. 7 An example of view update operation

Legend:
---> activation

The specification of the R-meta-class “class-view" in DDL of O2 system is :
class Class_View
inherit R_meta_class
type tuple (private _dependenis;unique set(Mectaview),
method
public add_view (mv:Metaview),
public del_attribute(name:string, mc:Metaclass),
public rename_attribute (old_name, new_name:string, mc:Metaclass),
public del_class(option:string, mc:Metaclass)
end;

6. Concluding Remarks

We have presented in this paper a meta-model that provides a novel solution to the
problem of knowledge evolution in object-oricnted databasc systems. The major purpose
of this work is to provide data model extensibility through the explicit representation of
their semantics. Our approach consists of proposing a meta-model that allows the

52

modification of the concept's semantic definition. The meta-model presented in this paper
emphasizes the following objectives :
- dynamic propagation of schema change operations
- automatic propagation of vicws update operations, on the database.
- Allowing data model semantic concept modification and the intcgratioin of new
concepts and relationships.

This approach requires an explicit representation of the data model concepts and the
integration of an active mechanism. Thercfore our meta-model is based on the explicit
description of inter-meta-class relationships combining the ECA mechanisms in order to
support the dynamic aspect of knowledge. The approach of modelling the propagation
change operations is more gencric and modular than the sofltware one. By the meta-model,
the propagation conditions and the aclions to rcalise these propagations are specificd in a
declarative way, the system may then trigger the actions to be performed when the
conditions are satisfied without user intervention.
A first version of our meta-model has been implemented with the O2 DBMS. This
version includes :

- Automatic propagation of schema change operations on the object instances.

- View dcfinition and automatic propagation of view updalc operations

Much remains to be done, in particulary concerning the extensibility aspect.

Another direction of rescarch consists to apply the meta-model to deal with versions.
Besides, our meta-model scems relevant to the represcntation of semantic heterogeneity in
a multidatabase system. The explicit representation of information on each local schema,
the views and on the global and the translation rules between them, will support the
ability 1o reason about the semantic heterogeneity (for instance to cnsure the view update

propagation).

References

1. ATKINSON et al., "The Object-Oriented Database System Manifesto”, in Proc. of
first Conference on Deductive and Object-Oriented Databases, Kyoto,
Japan,December 1989,

2. BANERJEE], KIM W., KIM K.J., KORTH H., "Semantics and Implementation
of Schemes Evolution in Object-oriented databases”, in Proc. ACM SIGMOD
Conference, San Francisco, May 1987,

3. BEERI C., "Formal models for Object Oriented Databases”, Proc.DOOD89, Kyoto,
Japan, Dec. 1989.

4. BELLAHSENE Z., "Vues et Points de Vue dans une Base de Données Orientée
Objet", Technical Report, LIRMM, Juny 1992,

5. DAYAL U. et al., "HiPAC : Project Combining Active Databases and Timed-
Constraints”, in SIGMOD RECORD, Vol. 17, N°1, March 1988.

53

6. BERTINOE., " A View Mcchanism for Object-oricnied Database”, 3rd
International Conference on Exicnding Databasc Technologie, March 23-24, Vienna
(Austria), 1992,

7. LECLUSE C., RICHARD P., VELEZ F., "O3, An Object Oricnted Data Modcl",
Altair Technical Report 10-87, 15 Sep. 87.

8. MC CARTHY D.R. and DAYAL U., "The Architecturc of An Active Data Base
Management System", in Proc. ACM SIGMOD 89 Conference, Portland, Oregon.

9. NGUYEN gian Toan, RIEU Dominique, "Schema Evolution in Object-oriented
Database systems”, Data&Knowledge Engineering, North Holland, vol4 Jully,
1989.

10. SNYDER A., "Encapsulation and Inheritance in Object-Oriented Programming
Languages", OOPSLA'86, Portand, OREGON, 1986.

11. STONEBRAKER and al., " The Implcmentation of POSTGRES", IEEE
Transactions en” Knowledge and Data Engincering, vol 2, N° 1, March 1990.

12. Reference Manual, O2 Technology, 1992,

13. ZICARIR., "Incomplete Information in Object-oriented Databases”, SIGMOD
RECORD, September 1990.

14. ZICARIR., "A framework for O2 Schema updates”, Altair Technical Report 38-
89, October 1989.

15. CARRE B. et GEIB J-M., "The Point of View Notion for multiple Inheritance",
in Proc. ECOOP/OOPSLA 90, October 1990.

