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Abs t r ac t .  Several recent papers demonstrate the interest of viewing 
systolic algorithms as while-programs whose statements are synchronous 
multiple assignments. This approach is based on the classical invariant 
method and compares favourably with earlier ones, based on recurrence 
systems and space-time transformations. Our purpose is to use the par- 
ticularities of the systolic paradigm to reduce the creativity needed to 
develop a systolic algorithm and its invariant. More precisely, two points 
are taken into account. First, the architecture is often chosen before the 
real beginning of the development and, second, the basic operations to 
be executed by individual cells are also partially known at the begin- 
ning. In fact, the development does not start from scratch, but from a 
"generic systolic array" (gsa), whose parameters have to be instantiated. 
Most systolic arrays are instances of a simple gsa that is introduced, 
investigated and illustrated in this paper. 

1 Introduction to systolic array design 

1.1 S y s t o l i c  a r r a y  

A systolic array is a regular network of similar processing units. These units, or 
cells, are connected by channels. Usually, each cell is connected with immediate  
neighbours only; this makes VLSI implementat ion more efficient [12]. 

The program executed by every cell is a loop, whose body is a finite, part ial ly 
ordered set of s tatements.  The s tatements  specify three kinds of actions: receiving 
values (data) from some input channels, performing computat ions within the 
internal memory,  t ransmit t ing values (results) to output  channels. 

The processing units act with high synchronism. This synchronism is often 
provided by a global, broadcasted clock, but this can lead to implementat ion 
problems. Another solution is the synchronization by communication,  named 
rendezvous: a value can be t ransmit ted from a cell to another one only when 
both cells are prepared to do so; there is no buffering mechanism. 

Let us outline briefly the most  classical application of systolic programming:  
the dot product of a mat r ix  A by a vector x. The result y is described by the 
usual formula: 

P 

= (1)  
j-----1 
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This is computed by the simple Pascal-like program 

for k := l to p do [ Yk :=0 ;  f o r j : = l  t o p d o y k : = y k + A k j x j ] .  

The complexity of this algorithm is O(p 2) since the assignment Yk := Yk + Akj xj 
is executed p2 times. However, as many of these operations may be executed con- 
currently, a systolic algorithm could be of linear complexity in time and space. 
Each cell will repeatedly execute the assignment with data received from the 
neighbouring cells and the outside, and transmit data and results to neighbour- 
ing cells or the outside. An adequate systolic algorithm for this application is 
presented in Section 3.2. 

1.2 Space -T ime  t r an s fo rma t ion  m e t h o d o l o g y  

Many approaches have been developed for systolic array design. Some of them 
are presented in [6]; more recent ones are [15, 8, 2, 9, 14, 16, 17, 13, 18, 19]. We 
will outline a commonly used method, Classically, systolic design is concerned 
with the parallelization of algorithms. The algorithm to be mapped is specified as 
a set of equations attached to integral points, and mapped on the architecture 
using a regular time., and space allocation scheme. This approach became the 
basis of many studies on the synthesis of systolic arrays. The main problems 
that were tackled were the scheduling of the computations, the mapping of the 
computations on regular architectures, the partitioning schemes for fixed size 
arrays, and the organization of multistep algorithms. 

Let us summarize the basics of the space-time transformation methodology, 
illustrated with the matrix-vector multiplication algorithm. The methodology 
consists of four main steps: the index localization, the uniformization, the space- 
time transformation, and the interface design. 
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Fig. 1. The index localization, the basis of most mapping methodologies (left) 
A uniform dependence graph for the matrix-vector multiplication algorithm (right) 
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Fig. 2. Space-time diagram : when and where the computations are performed (top) 
A classical array for the matrix-vector multiplication (bottom left) 
A new array for tile matrix-vector multiplication (bottom right) 
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1. Index localization. For the matrix-vector multiplication algorithm, the compu- 
tations to be performed are defined by equation (1), which uses indices k and j .  
In the index localization, A~j is attached to the point (k, j ) ,  xj is attached to the 
point (_, j) ,  and y~ is attached to the point (k,_). Figure 1 (left) shows graph- 
ically the result of this first step; the arcs of the graph represent the relations 
between the data. 

2. Uniformization. Figure 1 (left) gives an indication on where the data  need to 
be, and where the results are being produced. When a piece of data  is needed at 
many places, the fan-out degree of the associated node is large. In the same way, 
when a result uses many data, the fan-in degree is large. The uniformization 
consists on reducing the fan-in and the fan-out degrees of these nodes, using 
the well known pipelining technique [4, 16]. In other words, step two transforms 
the initial algorithm into a set of uniform recurrence equations. Figure 1 (right) 
represents graphically the result of step two. At each node, the same set of 
computations needs to be performed: 

You~ = Yin + Ain • xin , moat = x in .  (2) 

3. Space-time transformation. In this third step, a time and a processor alloca- 
tion functions are being chosen. These two functions define respectively when and 
where the computations will be performed. Affine functions are well suited for 
the mapping of uniform recurrences on regular arrays [10]. Figure 2 (top) shows 
graphically the result of step three; the space-time diagram indicates when and 
where the computations are performed: the computation associated to the node 
(p, t) is performed at processor p at the time t. 

4. Interface design. In this final step, the loading of the data and the unloading 
of the results are considered. There are two main techniques for doing so: either 
control signals are added with I /O lines, or the algorithm is slightly modified 
with the use of dummy variables. In the matrix-vector multiplication, we chose 
to propagate additional zeroes to avoid the use of control signals. The resulting 
classical circuit is shown in Figure 2 (bottom left), along with the data intro- 
duced in the circuit upon the time. The xk's and the results are respectively 
introduced and produced at the leftmost cell. Zeroes are also introduced to the 
left to avoid the use of control signals for the initializations. 

Many algorithms already were parallelized using this efficient technique. How- 
ever, this methodology suffers from some drawbacks. 
First, the algorithm must be specified as a set of recurrence equations, or nested 
do-loop instructions. This is not always easy to do. In particular, we will present 
an architecture that  computes the greatest common divisor, but to which no 
recurrence equation is directly associated. Yet, the proof that the architecture 
performs the right result is given, using an invariant technique. 
Second, a location in space is associated to each index value. This constraint is 
well suited for the synthesis of regular arrays: the data will be introduced in a 
regular order. However, this is not necessary and  it eliminates the possibility of 
synthesizing other architectures. See for example the circuit described in Fig- 
ure 2 (bottom right). The method used for its derivation is described hereafter; 
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no a priori assumption on the localization of the data  was made. On the other 
hand, the above space-time approach could not derive such a circuit without 
using a very complex space-time transformation function. 
The third drawback of the space-time transformation approach is the synthesis 
of the initializations. Here, additional zeroes were introduced to avoid the use 
of control signals. Thus, the initial algorithm (1) is now slightly modified; one 
should still use a proof technique to be sure that the results are not modified. In 
the technique presented hereafter, initializations are easily taken into account. 

1.3 A p r o g r a m - o r i e n t e d  m e t h o d o l o g y  

Various at tempts have been made to overcome the drawbacks of the space- 
time transformation method. Those based (explicitly or not) on viewing systolic 
design as program design seem especially promising, for the reasons listed below. 

- Most work has been done about formal methods for developing programs; 
these methods also apply to the development of systolic algorithms and, in 
particular, to the construction of an adequate while-loop. 

- The notion of invariant, introduced for programs, happens to keep a promi- 
nent role in the design of systolic algorithm. (This is clearly demonstrated 
m [18]; an additional example is given in Section 4.2.) 

- It is now widely accepted that operational notions should not appear in pro- 
gramming at the early design stages. For instance, control is left implicit in 
structured sequential programming (see e.g. [5]) and also in concurrent pro- 
gramming [3]. As space-time allocation is an operational notion, it is perhaps 
not adequate to base a method on this notion. In fact, space-time allocation 
should be deduced at the last stage of the design. Early introduction of 
operational notions often leads to exclude possible solutions of a problem. 

- Time and space boundary conditions often are a problem in the design of 
systolic arrays; this problem is best handled with an invariant-based method. 

To summarize, an adequate method of systolic design can be as follows. First, 
the specifications of the system are formalized wi th  an input and an output 
predicates, just as in structured sequential programming. Second, a couple (pro- 
gram,invariant) is deduced in an incremental way from the specification. Third, 
the sequential while-program is further transformed into a systolic program; the 
statements of this program are concurrent assignments. Last, the systolic array 
is (easily) obtained from the systolic program. This approach (of some aspects 
of it) is presented and illustrated in several papers, including [2, 14, 7, 13, 18]. 

Such a method clearly inherits the usual problem in structured sequential 
programming: the development of a program together with its invariant is not 
easy, and some kind of creativity is often needed. Besides, further creativity 
is needed to transform a sequential program and its invariant into a systolic 
program and its invariant. 



751 

1.4 G e n e r i c  sys to l ic  a r r ays  

We propose to reduce the need of creativity by taking into account two facts 
about systolic arrays. First, most of systolic arrays presented in the literature 
are based on a common, very simple architecture. It is helpful to consider a 
systolic array as an instance of this architecture; systolic design is then reduced to 
parameter choosing. Second, the specifications of the problem frequently suggest 
all or part of the elementary operations to be performed by each cell; when this 
is the case, the remaining problem is to determine how and when data are to be 
pushed in the array, and when the results are to be collected out. 

In this framework~ the starting point will be neither a sequential algorithm, 
nor the description of a single process, but a gsa (generic systolic array), that  
is, some kind of partially specified systolic array (or piece of systolic array). 
This object is equally distant from the source problem and the target systolic 
implementation. 

J~Lo ~U1 ~rL1 l~Li~ ~Ui ~ii l~Ln~ ~Un I~~LRn 
R ~  P1 "" Pi "" Pn 

L IDI LR2 "LRi ~ ~Di LRi+I LR,~ '  ~D,~ n+l 

Fig. 3. The linear generic systolic array 

We concentrate on one of the most common architectures. Processing units 
are connected in a linear array (Figure 3). Each cell is connected with its immedi- 
ate neighbours; the extreme cells can exchange data and results with the outside. 
Furthermore, each cell can receive data from the top and transmit results to the 
bottom. For instance, cell Pi admits three input channels; Pi can receive data 
from Pi-1 through channel LRi (Left to Right), from Pi+l through RLi, and 
from the outside through Ui (Up). Similarly, Pi has also three output channels, 
which allow transmission of results to the left and right neighbours and to the 
outside. In particular applications, some of these channels may be unused and 
suppressed. It is also possible to obtain 2-dimensional arrays by stacking several 
linear arrays and adequately connecting channels together. Ring, cylinder and 
torus arrays can be obtained in a similar way. 

The topological structure of our gsa is fixed; it is still necessary to fix a 
communication scheme, that  is, an order between the internal computation, the 
reception of data and the transmission of results. A simple scheme is as follows: 

communication ; computation (3) 

A generic systolic array is a systolic array whose computation part is left 
unspecified. The (generic) systolic arrays described here appear as particular 
CSP networks (see e.g. [15]). Recall that, if C is a transmission channel, the 
concurrent execution of the input statement C?x and of the output statement 
C!e implements the distributed assignment x := e. 
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This paper goes on as follows. In the next section, a formal model for the 
gsa is introduced; its properties are stated and proved. Two applications are 
presented in Sections 3 and 4, with emphasis on the critical design steps. 

2 P r o p e r t i e s  o f  t h e  l i n e a r  g e n e r i c  s y s t o l i c  a r r a y  

2.1 D e s c r i p t i o n  o f  t h e  l i nea r  gene r i c  sys to l i c  a r r a y  

The linear gsa is determined by the following points. 

- The topology of the network is depicted on Figure 3. 
- The scheme of communication is scheme (3). 
- The internal memory of cell Pi contains six communication registers, denoted 

A[i], B[i], C[i], D[i], E[i] and F[i]. The remaining part of the memory is 
denoted M[i]; its size is independent from the size n of the network. 

- The communication phase for cell Pi consists in the concurrent execution of 
the following statements (Figure 4): 

LRi ? A[i] , RLi-I !B[i] , Ui ?C[i] , Di!E[i] , iRi+ l !F[i], RLi ?G[i] . 
- The internal computation phase is not restricted; it can be modelled by a 

function 4. More specifically, the computation phase consists in executing 
the assignment (F, E, B, M) := 4~(A, C, G, M) .  

Comments. An instance of the linear gsa is obtained by replacing ~ by a total 
function (therefore, systolic algorithms are deterministic and never fail). 
During the communication phase, only the input registers A, C and G are 
changed; during the computation phase, only the storage register M and the 
output registers B, D and F are changed. The registers can consist of a single 
memory cell~ but also of any fixed amount of memory. 

The linear gsa comprises four logical components, which are listed below: 
- The left-to-right component contains LRi, A[i] and F[i], for all i. 
- The right-to-left component contains RLi, B[i] and G[i], for all i. 
- The up-to-down component contains Ui, Di, C[i] and E[i], for all i. 
- The storage component contains M[i], for all i. 

Incomplete instances of the linear gsa are obtained by omitting one or more 
logical components. 

RLi- f f ~  

L R i @  
~ D  L Ri+ I 

i 

Fig .  4. A typical cell of the linear generic systolic array 

Commeni. The Warp machine [1] can be viewed as a gsa of size 10. 



753 

2.2 E x t e r n a l  b e h a v l o u r  of  t h e  l i nea r  gsa  

From the outside, the linear gsa is seen as a "big cell". The input channels 
are LRo, Uo, . . . ,  U,~ and RL,~; the output  channels are RL-1 ,  D o , . . . ,  D,~ and 
LRr~+I. The structure of the program executed by the array is 

*(~)[transmission phase; computation phase], 

where "*(O)P" and "*(a+ l)P" respectively mean "skip" and "P; *(a)P". 
A description of the transmission phase is given below: 

LRI?A[1] ]1A[2: n] := F[ I :  n - 1] ]1LR,+I!F[n] Left-to-right, 
[I (ll~=~ uk?c[~]) II (ll~=aDk!E[k]) Up-to-down, 
II RLo!B[1] I[ G [ I : n  - 1] := B[2: n] H RLn?G[n] Right-to-left. 

The computation phase is modelled by 

F[r] : :  S(A[r], C[r],G[r],M[r]) Left-to-right, 
Cpt  = I1~=1 E[T] := T(A[r],C[r],G[r], M[r]) Up-to-down, 

B[r] := V(A[r],C[r],G[r], U[r]) Right-to-left, 
M[r] := W(A[r],C[r],G[r],M[r]) Storage. 

The notation "A[i :  i + n] := B[j : j + n]" stands for "II~=0 A[i + k] := B[j + k]" 
(skip if n < 0). 

The gsa can work only when connected with an environment, providing data 
and collecting results. Data and results are organized in streams; a stream s 
is a sequence (s(i) : i E No) of values. Data streams are called dL, dR and 
dU1, . . . , dUN;result streams are r L, r R and r D1, . . . , r D,~ ( " d" stands for "data" 
and "r" stands for "results"). The environment is modelled by a processing unit 
which executes the program 

�9 (~) [ i : =  i + 1; Update counter, 
L RI !dL( i) tl L Rn+ l ?r R( i) Left-to-right, 

I] (11~=1 U~!dUk(i) II Dk?rDk(i)) Up-to-down, 
H RLo?rL(i)II RLn !dR(i) Right-to-left. 

]. 

The initial value of i is 0. 
The parallel composition of the program executed by the network and the 

program executed by the array is an ordinary sequential program, since all com- 
munication statements appear in matching pairs, which reduce to assignments. 
This program is 

, (a) [i := i + ] ; 
a[1] := dL(i)1[ A[2:  n] := F [ I :  n -  1] ][ r R ( i ) : =  Fin] 

II e l l :  n] := dUl:n(i)H rDl :n ( i ) :=  E l l :  n] 
II r L ( i ) : =  B[1] II V [ l : n -  1] := B [ 2 :  n] N V[n] := d R ( i ) ;  
Cpt ] . 
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It has a very simple structure (single loop), and interesting knowledge can be 
gained about it, before instantiating the parameters S, T, V and W. This knowl- 
edge is conveniently summarized in the form of a recurrence system, which de- 
scribes the effect of the execution of the loop body. Here is the recurrence system. 

F/[r] = S ( F i _ I [ r -  1],dUr(i) ,Bi-l[r + 1],Mi_l[r]) 
Ei[r] = T ( F i - l [ r -  1],dUr(i) ,Bi-l[r + 1],Mi_l[r]) 
B~[r] = V(F~_I[r-  1],dU~(i),Bi_l[r + 1],M/_l[r]) (4) 
Mi[r] = W ( / ~ _ l [ r  - 1],dUr(i),Bi_l[r -~ 1],Mi_l[r]) 

The value of a register X of cell r, after the ith iteration, is denoted Xi[r] (the 
symbol X stands for F,  E, B or M). The ith element of the input stream dU~ 
is denoted dU~(i). The equations written above hold for all r in {1 , . . . ,  n} and 
for all i > 0, with the following additional conventions: 

Fi_I[0] = dL(i) ; B i - l [n  + 1] = dR(i)  (5) 

This recurrence system relates successive values of the output and storage reg- 
isters; the output streams of the gsa are given by the following identities: 

rL(i)  = Bi_I[1] ,  Vr :  ( r D r ( i )  = Ei-l[r] ) , rR(i)  = Fi-l[n] . (6) 

2.3 I n v a r i a n t  o f  a r e c u r r e n c e  s y s t e m  

An invariant of the recurrence system Xi+l = f (Xi )  is a predicate P such that  
VY [P(Y) ==~ P(f(Y))], that is, an invariant of the associated program 

i : =  0; while i < ~ do(Xi+l ,  i ) : =  ( f (X i ) , i+  1). 

The knowledge of an adequate invariant of a recurrence system can be useful, 
especially when the system cannot be easily solved. The interesting fact about 
invariants is that  they summarize substantial information under a concise form. 
An example will be given in paragraph 5.2. 

3 Design of algorithms for linear systolic arrays 

A linear systolic array is obtained by replacing the parameters S, T, V and W by 
actual functions in the linear gsa. These functions describe a specific algorithm 
for the array. 

3.1 O u t l i n e  o f  t h e  m e t h o d  

The design problem consists in adapting the gsa to a specific task. This adapta- 
tion can be performed in several steps, enumerated below. 

1. The linear generic systolic array is instantiated in a linear systolic array. 
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2. The behaviour of the array and its environment is formally stated as a set 
of recurrence equations. 

3. The recurrence system is solved, or an adequate invariant is found. 
4. The data and results streams of the array are interpreted as data and results 

of the problem. 

Let us comment a little about these four steps. In the first step, the designer 
decides what will be the computation part Cpt. The linear gsa allows four logical 
components, described respectively by functions S, T, V and W but, for some 
applications, one or two logical components will be enough. 

The second step is mechanical: the recurrence system corresponding to the 
array (and its environment) is obtained by mere instantiation of the generic 
recurrence system (4) introduced in paragraph 3.2. 

The third step can be difficult. From the practical point of view, let us observe 
that  the discovery of an adequate invariant can be easier than the discovery of the 
solution of the recurrence system. This point will be illustrated later (Section 4.2; 
see also [7]). 

The fourth step is ~he interpretation step. It allows to determine where and 
when the data  are transmitted into the array, and where and when the results 
are collected out. This determination is simpler than in the space-time method; 
it requires more carefulness than creativity, since rather little choice is left. 

A classical application is presented in this section, in order to demonstrate 
the design method. 

3.2 M a t r i x - v e c t o r  p r o d u c t  

As recalled in paragraph 1.1, the product y of a matrix A and a vector x is 
obtained by executing the assignments yk := Yk +Akjxj  for all k, j in {1 , . . . ,  p}. 
The initial value of every Yk is O. Assignments on y~ and Yk, may be performed 
concurrently if and only if k ~ k ~. 

Classically, the design problem for this application consists in discovering an 
adequate time and processor allocation for the p2 assignments. In this frame- 
work, an adequate allocation maps each assignment onto a processing unit, and 
also specifies when the assignment is performed. An adequate allocation should 
satisfy the concurrency constraint just mentioned and also an implementation 
constraint: a processing unit can perform only one assignment at a time. 

Many adequate allocations exist. One of them is the purely sequential one: 
there is only one processing unit, and the assignment yk := yk + Akjxj is per- 
formed at time t(k, j) := p(k - 1) + j.  Interesting adequate allocations are time- 
optimal ones: due to the concurrency constraint, the time of computation is at 
least p, since each Yk is altered by p assignments. An optimum can be reached as 
follows. There are p processing units, each of them devoted to a single Yk- Each 
unit sequentially executes the assignment, for j = 1 , . . . ,  p. 

This time-optimal allocation is not fully satisfactory. There are communica- 
tion problems. Each xj must be simultaneously broadcasted to all processing 
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values. As broadcasting is generally not accepted in systolic arrays, the simple 
time-optimal allocation will be rejected. 

The critical point of the design problem for this application is here: a trade-off 
between time-optimality and communication-optimality must be discovered. 

Let us now come back to the linear gsa. The problem of finding such a trade- 
off disappears, since the communication scheme is already fixed. As a matter  of 
fact, very little choice is left. Each cell will perform the assignment a := a + b . c ,  
for some a, b and c. We have only to assign the three flows available in the gsa 
to these three values. We are interested in linear time algorithms or, at least, 
in algorithms of complexity better than quadratic, so the only acceptable b-flow 
(matrix coefficients) is the UD-flow. Indeed, the remaining flows L R  and /~L 
allow only one input at a time. They are assigned arbitrarily; for instance, L R  is 
assigned to a (coefficients of y) and RL is assigned to c (coefficients of x). The 
storage logical unit is not used. This leads to the following parameters: 

S (a ,b , c )  = a + b , c ,  L R ,  
T ( a , b , c )  : b, UD , 
V (a, b, c) = c,  RL  . 

The corresponding recurrence system is: 

Vr: Fi[r] : F i - l [ r -  1] + dUr(i) * Bi - l [r  + 1]), 
W :  E;[,'] = dUb(i), 
w- m [~] = B~_ ~ [~ + ]]. 

We are interested in the result stream rR,  which is obtained easily as follows 

~R(i) = F i - l [ n ]  
= Fi-2[n - 1] + dUn(i) * B i -2[n  + 1] 
= Fi-3[n - 2] + d U n - l ( i  - 1) * Bi-a[n] + dUn(i) * B i -2[n  + 1] 

= F i - n - l [  O] "~- ~/=1 d U n - l + 1 (  i - l) �9 B i - l - l [ n  -- 1 + 2] 
= F i _ n _ l [ O  ] -'[- EL1 d U n _ l + l ( i  - l) * B i _ 2 l [ n  --[- 1] 
= d L ( i - n ) + E  '~ d U . _ , + ~ ( i - 0 , d R ( i - 2 1 +  1) /=1 

Comment .  The validity of the development is restricted by the range of the 
indices. The conditions are i - n  > O, 0 < n - l + l  < n, i - 1  > 0 and i - 2 l + 1  > 0, 
for all l in {1 , . . . , n} .  These conditions reduce to i _> 2n. (For 0 < i < 2n, the 
value rR( i )  depends on the initial values of the cells; as no condition is required 
about the initial values, this part of the result stream cannot be used.) 

Let us emphasize the fact that, for the time being, the allocation implemented 
by the array is not known yet. Even the relation between the size n of the systolic 
array and the dimension p of the matrix and of the vector, must still be fixed. 
This is done in the fourth and last step of the design procedure. 

The value Yk = }--~=i Ak,, .xr must be extracted from the stream rR ,  for 
all k in {1 , . . . ,  n}. As the first useful value of the result stream is rR (2n ) ,  the 
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useful values could be rR(2n) ,  r R ( 2 n  + 1), . . . ,  r R ( 3 n  - 1). More specifically, 
the identity 

p 

r R ( 2 n -  1 +  k) = ~ A k j x j  
j = l  

is matched, for k �9 {1 , . . . ,  n}, with the identity 
n 

r R ( 2 n  - 1 + k) = dL(n  - 1 + k) + ~ dU,~-,+a (2n - 1 + k - l) * d R ( 2 n  + k - 2 0 . 
I=1 

Several matchings are possible, and discovered easily. Obviously, n and p are 
equal and the dL flow must be 0. The d R  contains the components of x. A 
simple solution consists in deliver these components in the natural order; let us 
choose d L ( j )  = xj  mo.:l n-I -1  ("+1" is introduced because the range of j mod n is 
{ 0 , . . . ,  n - 1}, while the components of x are indexed in {1 , . . . ,  n}). This choice 
leads to: 

r R(  2n - 1 + k) = ~--~ dU,~-~+ l ( 2n + k - l - 1) �9 X( 2n+k_ 21)modn + 1 . 
l=l 

If n is odd, each component of x occurs exactly once in this sum. The last task 
consists in specifying the dU streams. The data dU,~-z+l(2n + k - l - 1) should 
be the matr ix  component A k, (2n+k-21)modn-t-1" This allows the determination 
of dUi( j ) .  The results are summarized below; a graphical representation is on 
Figure 2 (bot tom right). 

d L ( j )  = 0 j � 9  { n , . . . , 2 n - 1 }  ; 

dUi( j )  = A j _ i _ n + 2 , ( j + i _ n ) m o d n + l  i �9 { 1 , . . . , n } ,  
j �9 { n + i - - 1 , . . . , 2 n + i - - 2 } ;  (7) 

d R ( j )  : T j m o d r ~ + l  j �9 {1, . . . , 3 r t - 2 } .  

Commenls .  Similar results can be obtained for even n. 
Let us emphasize that  the data are delivered to the systolic array in a rather 
strange way; moreover, the components of the vector x must be delivered twice 
or three times. 
The components of x are output  through rLo, without modification, but with a 
delay of n time units. 
The components of A are output  through rD, without modification, but  with a 
delay of one time unit; more specifically, r O r ( j  + 1) = dUr( j ) .  
The execution is completed after 3n - 1 step. 
The initial contents of the registers are arbitrary; so are the members of the 
input streams which do not occur in formulas (7). 

4 M o r e  g e n e r a l  s y s t o l i c  a r r a y s  

4.1 F o r m a l  d e s c r i p t i o n  o f  g e n e r i c  a r r a y s  

Most systolic arrays can be obtained as combinations of linear arrays, whose 
communication channels are properly connected. Some important  combinations 
are introduced now. 
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A ring consists in a single linear array whose left and right communications 
channels have been connected; this means that  RLo and RL,~, on the one hand, 
and LR1 and LR,~+I on the other hand, have been identified. A rectangle is 
obtained by stacking p identical linear arrays. Let these arrays be identified 
by a superscript. Channel D~/"+1 and channel U j are identified, for 1 < i < n 
and 1 _< j < p. Further connections in a rectangle can lead to other interest- 
ing topologies. The horizontal cylinder is obtained by identifying U p and D 1. 
The vertical cylinder is obtained transforming each linear array of a rectangle 
into a ring, and a torus is obtained by. performing both up-down and left-right 
connections. A square is a rectangle where n = p. 

The equations (4, 5, 6) are a formal description of the generic linear systolic 
array. A similar description can be obtained for any architecture. This task is 
very simple for an architecture derived from the linear one. A single case, the 
ring, will be considered here. 

The formal description of the ring is obtained from the description of the 
linear array in a straightforward way. First, the identities 

rR(i) = dL(i) and rL(i) = did(i) 

are introduced in the equations (4, 5, 6); second, the streams dL, dR, rL and rR 
are eliminated. The resulting equations are 

Fi[r] = S ( F / _ l [ r -  1],dU~(i),Bi_l[r + 1],Mi_l[r]) 
Ei[r] : T ( F / _ I [ r -  1],dUr(i),Bi_l[r J- 1],Mi_l[r]) 
Bi[r  ] = V ( F I _ I [ T  - 1],dUr(i),Bi_l[r "t- l],Mi-l[r]) 
Mi[r] = W ( F i _ l  [r - -  1], dUr(i), Bi-l[r  + 1], Mi-l[r]) (8) 

Fi-I[0]  = Fi-l[n]; Bi - l [n  + 1] = Bi_I[1] 

V r  : ( r D r ( i )  = Ei-I[T]) 

4.2 G r e a t e s t  c o m m o n  d iv i sor  

Let us consider a set E = { x l , . . . ,  x,~} of positive integers. The greatest common 
divisor (gcd) of these numbers can be found by execution of the well known 
Euclidean algorithm: 

repeat until xi = xj for all i,j: 
select i, j such that xi > xj; replace xi by xi - xj. 

This algorithm always terminates and the common final value of the xi is 
the requested gcd. 

Let us try to implement this algorithm on a ring. The only data  are the 
numbers; let us suppose that, initially, cell Pi contains xi, for all i. Every cell 
will communicate the value it contains to, say, its right neighbour. (The right 
neighbour of P,~ is P1.) The computation part of cell Pi consists in comparing 
its value and the value received from Pi-1 and in subtracting the smallest value 
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from the greatest one; sooner or later, all the values in the array will become 
equal to the required gcd. 

This very informal idea should be formalized according to the methodology 
presented in Section 4. The equations for the ring can be simplified, since only 
two logical components are needed: the LR component, to implement the cir- 
culation of data, and the storage component, since each cell should contain a 
value. The resulting equations are 

Fi[r] = S(Fi- l[r  - 1], Mi-l[r]) 
Mi[r] = W ( F i - l [ r -  1], Mi_l[r]) (9) 

Fi_ l [O]  = F i _ l [ n ]  

The functions S and W are defined as follows: 

S(x, y) := if x r y then max(z, y) - rnin(x, y) else x,  
w(x ,  y) := miu(x, y). 

Let us note that  the following properties hold: 

Vx, y �9 N :  gcd(S(x ,y ) ,W(x ,y ) )  = gcd(x,y) ,  
Vx, y �9 N :  Ix # v S(x, y) + W(x, y) < x + y]. 

The recurrence system reduces to: 
Fi[r] = if Fi-l[r - 1] -~ Mi-l[r] 

then max(F,_l[r -  1], Mi-1 [r])-  min(Fi_l [ r -  1], M~_~[r])else F~_~[r- 1], 
Mi[r] = min(Fi_, [r - 1], Mi-1 [r]) 

with the convention Fi-l[0] = Fi-l[n]. The initial conditions are: 

F 0 [ r ] = M 0 [ r l = x r ,  r � 9  x r � 9  

Comment. Here is al~ example where the explicit solution of the recurrence sys- 
tem is not easily found (w point 3). Fortunately, such an explicit solution is 
not necessary, and it is sufficient to discover an adequate invariant instead. Let 
us introduce a notation: 

Zi =de] {Fi[1], Mi[1], Fi[2], . . . ,  M~[n - 1], Fi[n], Mi[n]}. 

An interesting property of the (multi)set Ei is gcd(E~) = gcd(xl, x2 , . . . ,  x, 0 . 
The proof is by induction on i. The identity is obvious for i = 0. Let us suppose 
it is true for i = k -1 .  The identity ged(Fi[r], Mi[r]) = gcd(Fi_l[r - 1], M~-l[r]) 
holds for all r :  for all positive integers x and y, gcd(x, y) = gcd(S(x, y), W(x ,  y)). 
As a consequence, 

gcd(Ei) = gcd(U{[}[r], Mi[r]}) = gc d ( U{r i - l [ r  - 1], Mi-l[r]}) = gcd(Ei-1).  

Let us note Zi the sum of the 2n members of the multiset El. The sequence 
(Z0, Z1 , . . . ,  Z,~,...) has three interesting properties. First, it is monotonically 
decreasing since, for all positive integer x, y, S(x, y) + W(x ,  y) <_ x + y. Second 
Zi -1  = Zi o c c u r s  if and only if F i - l [ r - - 1 ]  - -  Mi-i[r] = F i N  = Mii[r] ,  for all r .  

Third, Zi-1 = Zi = Zi+l occurs only if all the members of Ei are equal: the first 
identity implies Fi It] = Mi [r], the second one implies Fi I t -  1] = Mi [r], for all r. 
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As Zi is always a positive integer, the sequence cannot decrease forever, and a 
stable state is reached after finitely many iterations. 

Comments. The repetition number is still unknown. In practice, an additional 
circuit can be added to detect when all the registers F and M are identical; in 
this case, the common value is the gcd. 
It is also possible to determine an adequate repetition number. With the simple 
definition we have adopted for 5" and W, it would be rather large. An improve- 
ment consists in replacing, in the definition of S, the expression "max(x, y) - 
min(x, y)" by "max(x, y) mod.  min(x, y)", where "mod,"  is the usual modulo 
operator, except that  (nA mod,  A) is A instead of 0. In this case, a = logr 
is an adequate repetition number, where r = (1 + v/2)/2 and Z = mazrx~ + 1. 
(The Euclidean algorithm for the gcd is studied e.g. in [11].) 

4.3 O t h e r  e x a m p l e s  

Several examples have suggested that the instantiation of a generic systolic array 
is significantly easier than the design of a new array by the classical method. 
We did not encounter any example for which the instantiation method proposed 
here is more difficult than the space-time mapping method. However, the com- 
munication scheme considered in this paper (Equation 3) turned out to be rather 
restrictive and classical examples often require a slightly less elementary scheme, 
that  is : 

input ; computation ; output. (10) 

With the synchronous communication paradigm, "input" for a cell means 
"output" for some neighbour, so the global scheme really is 

input for odd cells I] output for even cells, 
computation for odd cells, 

input for even cells II output for odd cells, 
computation for even cells. 

A rather frequent additional refinement is to dissociate cycles related to dis- 
tinct communication flows; an example is 

a-input and b-output for odd ceils I[ a-output and b-input for even cells, 
a-computation for odd cells [I b-computation for even cells, 

a-input and b-output for even cells II a-output and b-input for odd cells, 
a-computation for even cells II b-computation for odd ceils. 

The method we propose is easily adapted to any kind of communication 
scheme, but the choice of an adequate communication scheme is left to the 
designer. The solution is not unique; distinct schemes lead to distinct trade-off 
between the number of cells, the size of the memory and the time of a typical 
computation. 
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5 C o n c l u s i o n  

We presented in this paper the very simple but powerful concept of generic 
systolic array. Its properties have been stated and proved once for all, using 
CSP-like notations. A new methodology for the mapping of algorithms on systolic 
arrays is based on this concept. Because no a priori assumption is made on the 
localization of the data, circuits can be derived which are different from those 
obtained with a space-time transformation technique. Despite the fact that  only 
simple algorithms haw~ been derived here, this methodology is very promising. 
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