
Generic Systolic Arrays:
A Methodology for Systolic Design

Pascal Gr ibomont

Universit6 de Liege
Institut Montefiore B28
4000 Li@ge Sart-Tilman (Belgium)

Vincent Van Dongen

Centre de Recherche Informatique
1801 McGill College, Bureau 800

Montr$al Canada H3A2N4

Abs t r ac t . Several recent papers demonstrate the interest of viewing
systolic algorithms as while-programs whose statements are synchronous
multiple assignments. This approach is based on the classical invariant
method and compares favourably with earlier ones, based on recurrence
systems and space-time transformations. Our purpose is to use the par-
ticularities of the systolic paradigm to reduce the creativity needed to
develop a systolic algorithm and its invariant. More precisely, two points
are taken into account. First, the architecture is often chosen before the
real beginning of the development and, second, the basic operations to
be executed by individual cells are also partially known at the begin-
ning. In fact, the development does not start from scratch, but from a
"generic systolic array" (gsa), whose parameters have to be instantiated.
Most systolic arrays are instances of a simple gsa that is introduced,
investigated and illustrated in this paper.

1 Introduction to systolic array design

1.1 S y s t o l i c a r r a y

A systolic array is a regular network of similar processing units. These units, or
cells, are connected by channels. Usually, each cell is connected with immediate
neighbours only; this makes VLSI implementat ion more efficient [12].

The program executed by every cell is a loop, whose body is a finite, part ial ly
ordered set of s tatements. The s tatements specify three kinds of actions: receiving
values (data) from some input channels, performing computat ions within the
internal memory, t ransmit t ing values (results) to output channels.

The processing units act with high synchronism. This synchronism is often
provided by a global, broadcasted clock, but this can lead to implementat ion
problems. Another solution is the synchronization by communication, named
rendezvous: a value can be t ransmit ted from a cell to another one only when
both cells are prepared to do so; there is no buffering mechanism.

Let us outline briefly the most classical application of systolic programming:
the dot product of a mat r ix A by a vector x. The result y is described by the
usual formula:

P

= (1)
j-----1

747

This is computed by the simple Pascal-like program

for k := l to p do [Yk :=0 ; f o r j : = l t o p d o y k : = y k + A k j x j] .

The complexity of this algorithm is O(p 2) since the assignment Yk := Yk + Akj xj
is executed p2 times. However, as many of these operations may be executed con-
currently, a systolic algorithm could be of linear complexity in time and space.
Each cell will repeatedly execute the assignment with data received from the
neighbouring cells and the outside, and transmit data and results to neighbour-
ing cells or the outside. An adequate systolic algorithm for this application is
presented in Section 3.2.

1.2 Space -T ime t r an s fo rma t ion m e t h o d o l o g y

Many approaches have been developed for systolic array design. Some of them
are presented in [6]; more recent ones are [15, 8, 2, 9, 14, 16, 17, 13, 18, 19]. We
will outline a commonly used method, Classically, systolic design is concerned
with the parallelization of algorithms. The algorithm to be mapped is specified as
a set of equations attached to integral points, and mapped on the architecture
using a regular time., and space allocation scheme. This approach became the
basis of many studies on the synthesis of systolic arrays. The main problems
that were tackled were the scheduling of the computations, the mapping of the
computations on regular architectures, the partitioning schemes for fixed size
arrays, and the organization of multistep algorithms.

Let us summarize the basics of the space-time transformation methodology,
illustrated with the matrix-vector multiplication algorithm. The methodology
consists of four main steps: the index localization, the uniformization, the space-
time transformation, and the interface design.

X5'

X4

X3

I
X21

Xl

J
Als A2s A:ls A45 Ass

A14

.A13

A12

y l y2] y3] Y,] ys

X5

x4 Aa4 A24 A34 A44

x3 A13 A23 A33 A43

x2 A12 A22 Aa2 A42

xl All A21 Aal A41

J

y5

Ass

A54

A53

A52

Asl

0

Fig. 1. The index localization, the basis of most mapping methodologies (left)
A uniform dependence graph for the matrix-vector multiplication algorithm (right)

Y5

. Y~ ~ A~

~Yz ~ A~

t " ~ 1 2 " ~ 2 1

Y5
0
Y4 y5

0 A~4 x4 y4
y3
0 A55 As2 A4a xa ya
y: A4~ A~4
0 Az~ A44 A53 A~5 A41 A32x2y2
yl A:s A34 A43 A52
xsA15 A24 A33 A42 A51 0 Asa A44 Aa5 A21xlyl

A14 A23 A~: A41 0 A51 A42 A33 A24 A15x5
x4 A13 A22 A31 0

A12 A~I 0 A45 A31 A22 Ala x4
x3 All 0

0 Aa4 A2a A n x~

0 A~a A ~ x~

0 A ~ x~

~5

x2 0

x l 0

0 x4

~3

~2
0

Fig. 2. Space-time diagram : when and where the computations are performed (top)
A classical array for the matrix-vector multiplication (bottom left)
A new array for tile matrix-vector multiplication (bottom right)

749

1. Index localization. For the matrix-vector multiplication algorithm, the compu-
tations to be performed are defined by equation (1), which uses indices k and j .
In the index localization, A~j is attached to the point (k, j) , xj is attached to the
point (_, j) , and y~ is attached to the point (k,_). Figure 1 (left) shows graph-
ically the result of this first step; the arcs of the graph represent the relations
between the data.

2. Uniformization. Figure 1 (left) gives an indication on where the data need to
be, and where the results are being produced. When a piece of data is needed at
many places, the fan-out degree of the associated node is large. In the same way,
when a result uses many data, the fan-in degree is large. The uniformization
consists on reducing the fan-in and the fan-out degrees of these nodes, using
the well known pipelining technique [4, 16]. In other words, step two transforms
the initial algorithm into a set of uniform recurrence equations. Figure 1 (right)
represents graphically the result of step two. At each node, the same set of
computations needs to be performed:

You~ = Yin + Ain • xin , moat = x in . (2)

3. Space-time transformation. In this third step, a time and a processor alloca-
tion functions are being chosen. These two functions define respectively when and
where the computations will be performed. Affine functions are well suited for
the mapping of uniform recurrences on regular arrays [10]. Figure 2 (top) shows
graphically the result of step three; the space-time diagram indicates when and
where the computations are performed: the computation associated to the node
(p, t) is performed at processor p at the time t.

4. Interface design. In this final step, the loading of the data and the unloading
of the results are considered. There are two main techniques for doing so: either
control signals are added with I /O lines, or the algorithm is slightly modified
with the use of dummy variables. In the matrix-vector multiplication, we chose
to propagate additional zeroes to avoid the use of control signals. The resulting
classical circuit is shown in Figure 2 (bottom left), along with the data intro-
duced in the circuit upon the time. The xk's and the results are respectively
introduced and produced at the leftmost cell. Zeroes are also introduced to the
left to avoid the use of control signals for the initializations.

Many algorithms already were parallelized using this efficient technique. How-
ever, this methodology suffers from some drawbacks.
First, the algorithm must be specified as a set of recurrence equations, or nested
do-loop instructions. This is not always easy to do. In particular, we will present
an architecture that computes the greatest common divisor, but to which no
recurrence equation is directly associated. Yet, the proof that the architecture
performs the right result is given, using an invariant technique.
Second, a location in space is associated to each index value. This constraint is
well suited for the synthesis of regular arrays: the data will be introduced in a
regular order. However, this is not necessary and it eliminates the possibility of
synthesizing other architectures. See for example the circuit described in Fig-
ure 2 (bottom right). The method used for its derivation is described hereafter;

750

no a priori assumption on the localization of the data was made. On the other
hand, the above space-time approach could not derive such a circuit without
using a very complex space-time transformation function.
The third drawback of the space-time transformation approach is the synthesis
of the initializations. Here, additional zeroes were introduced to avoid the use
of control signals. Thus, the initial algorithm (1) is now slightly modified; one
should still use a proof technique to be sure that the results are not modified. In
the technique presented hereafter, initializations are easily taken into account.

1.3 A p r o g r a m - o r i e n t e d m e t h o d o l o g y

Various at tempts have been made to overcome the drawbacks of the space-
time transformation method. Those based (explicitly or not) on viewing systolic
design as program design seem especially promising, for the reasons listed below.

- Most work has been done about formal methods for developing programs;
these methods also apply to the development of systolic algorithms and, in
particular, to the construction of an adequate while-loop.

- The notion of invariant, introduced for programs, happens to keep a promi-
nent role in the design of systolic algorithm. (This is clearly demonstrated
m [18]; an additional example is given in Section 4.2.)

- It is now widely accepted that operational notions should not appear in pro-
gramming at the early design stages. For instance, control is left implicit in
structured sequential programming (see e.g. [5]) and also in concurrent pro-
gramming [3]. As space-time allocation is an operational notion, it is perhaps
not adequate to base a method on this notion. In fact, space-time allocation
should be deduced at the last stage of the design. Early introduction of
operational notions often leads to exclude possible solutions of a problem.

- Time and space boundary conditions often are a problem in the design of
systolic arrays; this problem is best handled with an invariant-based method.

To summarize, an adequate method of systolic design can be as follows. First,
the specifications of the system are formalized wi th an input and an output
predicates, just as in structured sequential programming. Second, a couple (pro-
gram,invariant) is deduced in an incremental way from the specification. Third,
the sequential while-program is further transformed into a systolic program; the
statements of this program are concurrent assignments. Last, the systolic array
is (easily) obtained from the systolic program. This approach (of some aspects
of it) is presented and illustrated in several papers, including [2, 14, 7, 13, 18].

Such a method clearly inherits the usual problem in structured sequential
programming: the development of a program together with its invariant is not
easy, and some kind of creativity is often needed. Besides, further creativity
is needed to transform a sequential program and its invariant into a systolic
program and its invariant.

751

1.4 G e n e r i c sys to l ic a r r ays

We propose to reduce the need of creativity by taking into account two facts
about systolic arrays. First, most of systolic arrays presented in the literature
are based on a common, very simple architecture. It is helpful to consider a
systolic array as an instance of this architecture; systolic design is then reduced to
parameter choosing. Second, the specifications of the problem frequently suggest
all or part of the elementary operations to be performed by each cell; when this
is the case, the remaining problem is to determine how and when data are to be
pushed in the array, and when the results are to be collected out.

In this framework~ the starting point will be neither a sequential algorithm,
nor the description of a single process, but a gsa (generic systolic array), that
is, some kind of partially specified systolic array (or piece of systolic array).
This object is equally distant from the source problem and the target systolic
implementation.

J~Lo ~U1 ~rL1 l~Li~ ~Ui ~ii l~Ln~ ~Un I~~LRn
R ~ P1 "" Pi "" Pn

L IDI LR2 "LRi ~ ~Di LRi+I LR,~ ' ~D,~ n+l

Fig. 3. The linear generic systolic array

We concentrate on one of the most common architectures. Processing units
are connected in a linear array (Figure 3). Each cell is connected with its immedi-
ate neighbours; the extreme cells can exchange data and results with the outside.
Furthermore, each cell can receive data from the top and transmit results to the
bottom. For instance, cell Pi admits three input channels; Pi can receive data
from Pi-1 through channel LRi (Left to Right), from Pi+l through RLi, and
from the outside through Ui (Up). Similarly, Pi has also three output channels,
which allow transmission of results to the left and right neighbours and to the
outside. In particular applications, some of these channels may be unused and
suppressed. It is also possible to obtain 2-dimensional arrays by stacking several
linear arrays and adequately connecting channels together. Ring, cylinder and
torus arrays can be obtained in a similar way.

The topological structure of our gsa is fixed; it is still necessary to fix a
communication scheme, that is, an order between the internal computation, the
reception of data and the transmission of results. A simple scheme is as follows:

communication ; computation (3)

A generic systolic array is a systolic array whose computation part is left
unspecified. The (generic) systolic arrays described here appear as particular
CSP networks (see e.g. [15]). Recall that, if C is a transmission channel, the
concurrent execution of the input statement C?x and of the output statement
C!e implements the distributed assignment x := e.

752

This paper goes on as follows. In the next section, a formal model for the
gsa is introduced; its properties are stated and proved. Two applications are
presented in Sections 3 and 4, with emphasis on the critical design steps.

2 P r o p e r t i e s o f t h e l i n e a r g e n e r i c s y s t o l i c a r r a y

2.1 D e s c r i p t i o n o f t h e l i nea r gene r i c sys to l i c a r r a y

The linear gsa is determined by the following points.

- The topology of the network is depicted on Figure 3.
- The scheme of communication is scheme (3).
- The internal memory of cell Pi contains six communication registers, denoted

A[i], B[i], C[i], D[i], E[i] and F[i]. The remaining part of the memory is
denoted M[i]; its size is independent from the size n of the network.

- The communication phase for cell Pi consists in the concurrent execution of
the following statements (Figure 4):

LRi ? A[i] , RLi-I !B[i] , Ui ?C[i] , Di!E[i] , iRi+ l !F[i], RLi ?G[i] .
- The internal computation phase is not restricted; it can be modelled by a

function 4. More specifically, the computation phase consists in executing
the assignment (F, E, B, M) := 4~(A, C, G, M) .

Comments. An instance of the linear gsa is obtained by replacing ~ by a total
function (therefore, systolic algorithms are deterministic and never fail).
During the communication phase, only the input registers A, C and G are
changed; during the computation phase, only the storage register M and the
output registers B, D and F are changed. The registers can consist of a single
memory cell~ but also of any fixed amount of memory.

The linear gsa comprises four logical components, which are listed below:
- The left-to-right component contains LRi, A[i] and F[i], for all i.
- The right-to-left component contains RLi, B[i] and G[i], for all i.
- The up-to-down component contains Ui, Di, C[i] and E[i], for all i.
- The storage component contains M[i], for all i.

Incomplete instances of the linear gsa are obtained by omitting one or more
logical components.

RLi- f f ~

L R i @
~ D L Ri+ I

i

Fig . 4. A typical cell of the linear generic systolic array

Commeni. The Warp machine [1] can be viewed as a gsa of size 10.

753

2.2 E x t e r n a l b e h a v l o u r of t h e l i nea r gsa

From the outside, the linear gsa is seen as a "big cell". The input channels
are LRo, Uo, . . . , U,~ and RL,~; the output channels are RL-1 , D o , . . . , D,~ and
LRr~+I. The structure of the program executed by the array is

*(~)[transmission phase; computation phase],

where "*(O)P" and "*(a+ l)P" respectively mean "skip" and "P; *(a)P".
A description of the transmission phase is given below:

LRI?A[1]]1A[2: n] := F[I : n - 1]]1LR,+I!F[n] Left-to-right,
[I (ll~=~ uk?c[~]) II (ll~=aDk!E[k]) Up-to-down,
II RLo!B[1] I[G [I : n - 1] := B[2: n] H RLn?G[n] Right-to-left.

The computation phase is modelled by

F[r] : : S(A[r], C[r],G[r],M[r]) Left-to-right,
Cpt = I1~=1 E[T] := T(A[r],C[r],G[r], M[r]) Up-to-down,

B[r] := V(A[r],C[r],G[r], U[r]) Right-to-left,
M[r] := W(A[r],C[r],G[r],M[r]) Storage.

The notation "A[i : i + n] := B[j : j + n]" stands for "II~=0 A[i + k] := B[j + k]"
(skip if n < 0).

The gsa can work only when connected with an environment, providing data
and collecting results. Data and results are organized in streams; a stream s
is a sequence (s(i) : i E No) of values. Data streams are called dL, dR and
dU1, . . . , dUN;result streams are r L, r R and r D1, . . . , r D,~ (" d" stands for "data"
and "r" stands for "results"). The environment is modelled by a processing unit
which executes the program

�9 (~) [i : = i + 1; Update counter,
L RI !dL(i) tl L Rn+ l ?r R(i) Left-to-right,

I] (11~=1 U~!dUk(i) II Dk?rDk(i)) Up-to-down,
H RLo?rL(i)II RLn !dR(i) Right-to-left.

].

The initial value of i is 0.
The parallel composition of the program executed by the network and the

program executed by the array is an ordinary sequential program, since all com-
munication statements appear in matching pairs, which reduce to assignments.
This program is

, (a) [i := i +] ;
a[1] := dL(i)1[A[2: n] := F [I : n - 1]][r R (i) : = Fin]

II e l l : n] := dUl:n(i)H rDl :n (i) := E l l : n]
II r L (i) : = B[1] II V [l : n - 1] := B [2 : n] N V[n] := d R (i) ;
Cpt] .

754

It has a very simple structure (single loop), and interesting knowledge can be
gained about it, before instantiating the parameters S, T, V and W. This knowl-
edge is conveniently summarized in the form of a recurrence system, which de-
scribes the effect of the execution of the loop body. Here is the recurrence system.

F/[r] = S (F i _ I [r - 1],dUr(i) ,Bi-l[r + 1],Mi_l[r])
Ei[r] = T (F i - l [r - 1],dUr(i) ,Bi-l[r + 1],Mi_l[r])
B~[r] = V(F~_I[r- 1],dU~(i),Bi_l[r + 1],M/_l[r]) (4)
Mi[r] = W (/ ~ _ l [r - 1],dUr(i),Bi_l[r -~ 1],Mi_l[r])

The value of a register X of cell r, after the ith iteration, is denoted Xi[r] (the
symbol X stands for F, E, B or M). The ith element of the input stream dU~
is denoted dU~(i). The equations written above hold for all r in {1 , . . . , n} and
for all i > 0, with the following additional conventions:

Fi_I[0] = dL(i) ; B i - l [n + 1] = dR(i) (5)

This recurrence system relates successive values of the output and storage reg-
isters; the output streams of the gsa are given by the following identities:

rL(i) = Bi_I[1] , Vr : (r D r (i) = Ei-l[r]) , rR(i) = Fi-l[n] . (6)

2.3 I n v a r i a n t o f a r e c u r r e n c e s y s t e m

An invariant of the recurrence system Xi+l = f (Xi) is a predicate P such that
VY [P(Y) ==~ P(f(Y))], that is, an invariant of the associated program

i : = 0; while i < ~ do(Xi+l , i) : = (f (X i) , i+ 1).

The knowledge of an adequate invariant of a recurrence system can be useful,
especially when the system cannot be easily solved. The interesting fact about
invariants is that they summarize substantial information under a concise form.
An example will be given in paragraph 5.2.

3 Design of algorithms for linear systolic arrays

A linear systolic array is obtained by replacing the parameters S, T, V and W by
actual functions in the linear gsa. These functions describe a specific algorithm
for the array.

3.1 O u t l i n e o f t h e m e t h o d

The design problem consists in adapting the gsa to a specific task. This adapta-
tion can be performed in several steps, enumerated below.

1. The linear generic systolic array is instantiated in a linear systolic array.

755

2. The behaviour of the array and its environment is formally stated as a set
of recurrence equations.

3. The recurrence system is solved, or an adequate invariant is found.
4. The data and results streams of the array are interpreted as data and results

of the problem.

Let us comment a little about these four steps. In the first step, the designer
decides what will be the computation part Cpt. The linear gsa allows four logical
components, described respectively by functions S, T, V and W but, for some
applications, one or two logical components will be enough.

The second step is mechanical: the recurrence system corresponding to the
array (and its environment) is obtained by mere instantiation of the generic
recurrence system (4) introduced in paragraph 3.2.

The third step can be difficult. From the practical point of view, let us observe
that the discovery of an adequate invariant can be easier than the discovery of the
solution of the recurrence system. This point will be illustrated later (Section 4.2;
see also [7]).

The fourth step is ~he interpretation step. It allows to determine where and
when the data are transmitted into the array, and where and when the results
are collected out. This determination is simpler than in the space-time method;
it requires more carefulness than creativity, since rather little choice is left.

A classical application is presented in this section, in order to demonstrate
the design method.

3.2 M a t r i x - v e c t o r p r o d u c t

As recalled in paragraph 1.1, the product y of a matrix A and a vector x is
obtained by executing the assignments yk := Yk +Akjxj for all k, j in {1 , . . . , p}.
The initial value of every Yk is O. Assignments on y~ and Yk, may be performed
concurrently if and only if k ~ k ~.

Classically, the design problem for this application consists in discovering an
adequate time and processor allocation for the p2 assignments. In this frame-
work, an adequate allocation maps each assignment onto a processing unit, and
also specifies when the assignment is performed. An adequate allocation should
satisfy the concurrency constraint just mentioned and also an implementation
constraint: a processing unit can perform only one assignment at a time.

Many adequate allocations exist. One of them is the purely sequential one:
there is only one processing unit, and the assignment yk := yk + Akjxj is per-
formed at time t(k, j) := p(k - 1) + j. Interesting adequate allocations are time-
optimal ones: due to the concurrency constraint, the time of computation is at
least p, since each Yk is altered by p assignments. An optimum can be reached as
follows. There are p processing units, each of them devoted to a single Yk- Each
unit sequentially executes the assignment, for j = 1 , . . . , p.

This time-optimal allocation is not fully satisfactory. There are communica-
tion problems. Each xj must be simultaneously broadcasted to all processing

756

values. As broadcasting is generally not accepted in systolic arrays, the simple
time-optimal allocation will be rejected.

The critical point of the design problem for this application is here: a trade-off
between time-optimality and communication-optimality must be discovered.

Let us now come back to the linear gsa. The problem of finding such a trade-
off disappears, since the communication scheme is already fixed. As a matter of
fact, very little choice is left. Each cell will perform the assignment a := a + b . c ,
for some a, b and c. We have only to assign the three flows available in the gsa
to these three values. We are interested in linear time algorithms or, at least,
in algorithms of complexity better than quadratic, so the only acceptable b-flow
(matrix coefficients) is the UD-flow. Indeed, the remaining flows L R and /~L
allow only one input at a time. They are assigned arbitrarily; for instance, L R is
assigned to a (coefficients of y) and RL is assigned to c (coefficients of x). The
storage logical unit is not used. This leads to the following parameters:

S (a ,b , c) = a + b , c , L R ,
T (a , b , c) : b, UD ,
V (a, b, c) = c, RL .

The corresponding recurrence system is:

Vr: Fi[r] : F i - l [r - 1] + dUr(i) * Bi - l [r + 1]),
W : E;[,'] = dUb(i),
w- m [~] = B~_ ~ [~ +]].

We are interested in the result stream rR, which is obtained easily as follows

~R(i) = F i - l [n]
= Fi-2[n - 1] + dUn(i) * B i -2[n + 1]
= Fi-3[n - 2] + d U n - l (i - 1) * Bi-a[n] + dUn(i) * B i -2[n + 1]

= F i - n - l [O] "~- ~/=1 d U n - l + 1 (i - l) �9 B i - l - l [n -- 1 + 2]
= F i _ n _ l [O] -'[- EL1 d U n _ l + l (i - l) * B i _ 2 l [n --[- 1]
= d L (i - n) + E '~ d U . _ , + ~ (i - 0 , d R (i - 2 1 + 1) /=1

Comment . The validity of the development is restricted by the range of the
indices. The conditions are i - n > O, 0 < n - l + l < n, i - 1 > 0 and i - 2 l + 1 > 0,
for all l in {1 , . . . , n} . These conditions reduce to i _> 2n. (For 0 < i < 2n, the
value rR(i) depends on the initial values of the cells; as no condition is required
about the initial values, this part of the result stream cannot be used.)

Let us emphasize the fact that, for the time being, the allocation implemented
by the array is not known yet. Even the relation between the size n of the systolic
array and the dimension p of the matrix and of the vector, must still be fixed.
This is done in the fourth and last step of the design procedure.

The value Yk = }--~=i Ak,, .xr must be extracted from the stream rR , for
all k in {1 , . . . , n}. As the first useful value of the result stream is rR (2n) , the

757

useful values could be rR(2n) , r R (2 n + 1), . . . , r R (3 n - 1). More specifically,
the identity

p

r R (2 n - 1 + k) = ~ A k j x j
j = l

is matched, for k �9 {1 , . . . , n}, with the identity
n

r R (2 n - 1 + k) = dL(n - 1 + k) + ~ dU,~-,+a (2n - 1 + k - l) * d R (2 n + k - 2 0 .
I=1

Several matchings are possible, and discovered easily. Obviously, n and p are
equal and the dL flow must be 0. The d R contains the components of x. A
simple solution consists in deliver these components in the natural order; let us
choose d L (j) = xj mo.:l n-I -1 ("+1" is introduced because the range of j mod n is
{ 0 , . . . , n - 1}, while the components of x are indexed in {1 , . . . , n}). This choice
leads to:

r R(2n - 1 + k) = ~--~ dU,~-~+ l (2n + k - l - 1) �9 X(2n+k_ 21)modn + 1 .
l=l

If n is odd, each component of x occurs exactly once in this sum. The last task
consists in specifying the dU streams. The data dU,~-z+l(2n + k - l - 1) should
be the matr ix component A k, (2n+k-21)modn-t-1" This allows the determination
of dUi(j) . The results are summarized below; a graphical representation is on
Figure 2 (bot tom right).

d L (j) = 0 j � 9 { n , . . . , 2 n - 1 } ;

dUi(j) = A j _ i _ n + 2 , (j + i _ n) m o d n + l i �9 { 1 , . . . , n } ,
j �9 { n + i - - 1 , . . . , 2 n + i - - 2 } ; (7)

d R (j) : T j m o d r ~ + l j �9 {1, . . . , 3 r t - 2 } .

Commenls . Similar results can be obtained for even n.
Let us emphasize that the data are delivered to the systolic array in a rather
strange way; moreover, the components of the vector x must be delivered twice
or three times.
The components of x are output through rLo, without modification, but with a
delay of n time units.
The components of A are output through rD, without modification, but with a
delay of one time unit; more specifically, r O r (j + 1) = dUr(j) .
The execution is completed after 3n - 1 step.
The initial contents of the registers are arbitrary; so are the members of the
input streams which do not occur in formulas (7).

4 M o r e g e n e r a l s y s t o l i c a r r a y s

4.1 F o r m a l d e s c r i p t i o n o f g e n e r i c a r r a y s

Most systolic arrays can be obtained as combinations of linear arrays, whose
communication channels are properly connected. Some important combinations
are introduced now.

758

A ring consists in a single linear array whose left and right communications
channels have been connected; this means that RLo and RL,~, on the one hand,
and LR1 and LR,~+I on the other hand, have been identified. A rectangle is
obtained by stacking p identical linear arrays. Let these arrays be identified
by a superscript. Channel D~/"+1 and channel U j are identified, for 1 < i < n
and 1 _< j < p. Further connections in a rectangle can lead to other interest-
ing topologies. The horizontal cylinder is obtained by identifying U p and D 1.
The vertical cylinder is obtained transforming each linear array of a rectangle
into a ring, and a torus is obtained by. performing both up-down and left-right
connections. A square is a rectangle where n = p.

The equations (4, 5, 6) are a formal description of the generic linear systolic
array. A similar description can be obtained for any architecture. This task is
very simple for an architecture derived from the linear one. A single case, the
ring, will be considered here.

The formal description of the ring is obtained from the description of the
linear array in a straightforward way. First, the identities

rR(i) = dL(i) and rL(i) = did(i)

are introduced in the equations (4, 5, 6); second, the streams dL, dR, rL and rR
are eliminated. The resulting equations are

Fi[r] = S (F / _ l [r - 1],dU~(i),Bi_l[r + 1],Mi_l[r])
Ei[r] : T (F / _ I [r - 1],dUr(i),Bi_l[r J- 1],Mi_l[r])
Bi[r] = V (F I _ I [T - 1],dUr(i),Bi_l[r "t- l],Mi-l[r])
Mi[r] = W (F i _ l [r - - 1], dUr(i), Bi-l[r + 1], Mi-l[r]) (8)

Fi-I[0] = Fi-l[n]; Bi - l [n + 1] = Bi_I[1]

V r : (r D r (i) = Ei-I[T])

4.2 G r e a t e s t c o m m o n d iv i sor

Let us consider a set E = { x l , . . . , x,~} of positive integers. The greatest common
divisor (gcd) of these numbers can be found by execution of the well known
Euclidean algorithm:

repeat until xi = xj for all i,j:
select i, j such that xi > xj; replace xi by xi - xj.

This algorithm always terminates and the common final value of the xi is
the requested gcd.

Let us try to implement this algorithm on a ring. The only data are the
numbers; let us suppose that, initially, cell Pi contains xi, for all i. Every cell
will communicate the value it contains to, say, its right neighbour. (The right
neighbour of P,~ is P1.) The computation part of cell Pi consists in comparing
its value and the value received from Pi-1 and in subtracting the smallest value

759

from the greatest one; sooner or later, all the values in the array will become
equal to the required gcd.

This very informal idea should be formalized according to the methodology
presented in Section 4. The equations for the ring can be simplified, since only
two logical components are needed: the LR component, to implement the cir-
culation of data, and the storage component, since each cell should contain a
value. The resulting equations are

Fi[r] = S(Fi- l[r - 1], Mi-l[r])
Mi[r] = W (F i - l [r - 1], Mi_l[r]) (9)

Fi_ l [O] = F i _ l [n]

The functions S and W are defined as follows:

S(x, y) := if x r y then max(z, y) - rnin(x, y) else x,
w(x , y) := miu(x, y).

Let us note that the following properties hold:

Vx, y �9 N : gcd(S(x ,y) ,W(x ,y)) = gcd(x,y) ,
Vx, y �9 N : Ix # v S(x, y) + W(x, y) < x + y].

The recurrence system reduces to:
Fi[r] = if Fi-l[r - 1] -~ Mi-l[r]

then max(F,_l[r - 1], Mi-1 [r])- min(Fi_l [r - 1], M~_~[r])else F~_~[r- 1],
Mi[r] = min(Fi_, [r - 1], Mi-1 [r])

with the convention Fi-l[0] = Fi-l[n]. The initial conditions are:

F 0 [r] = M 0 [r l = x r , r � 9 x r � 9

Comment. Here is al~ example where the explicit solution of the recurrence sys-
tem is not easily found (w point 3). Fortunately, such an explicit solution is
not necessary, and it is sufficient to discover an adequate invariant instead. Let
us introduce a notation:

Zi =de] {Fi[1], Mi[1], Fi[2], . . . , M~[n - 1], Fi[n], Mi[n]}.

An interesting property of the (multi)set Ei is gcd(E~) = gcd(xl, x2 , . . . , x, 0 .
The proof is by induction on i. The identity is obvious for i = 0. Let us suppose
it is true for i = k -1 . The identity ged(Fi[r], Mi[r]) = gcd(Fi_l[r - 1], M~-l[r])
holds for all r : for all positive integers x and y, gcd(x, y) = gcd(S(x, y), W(x , y)).
As a consequence,

gcd(Ei) = gcd(U{[}[r], Mi[r]}) = gc d (U{r i - l [r - 1], Mi-l[r]}) = gcd(Ei-1).

Let us note Zi the sum of the 2n members of the multiset El. The sequence
(Z0, Z1 , . . . , Z,~,...) has three interesting properties. First, it is monotonically
decreasing since, for all positive integer x, y, S(x, y) + W(x , y) <_ x + y. Second
Zi -1 = Zi o c c u r s if and only if F i - l [r - - 1] - - Mi-i[r] = F i N = Mii[r] , for all r .

Third, Zi-1 = Zi = Zi+l occurs only if all the members of Ei are equal: the first
identity implies Fi It] = Mi [r], the second one implies Fi I t - 1] = Mi [r], for all r.

760

As Zi is always a positive integer, the sequence cannot decrease forever, and a
stable state is reached after finitely many iterations.

Comments. The repetition number is still unknown. In practice, an additional
circuit can be added to detect when all the registers F and M are identical; in
this case, the common value is the gcd.
It is also possible to determine an adequate repetition number. With the simple
definition we have adopted for 5" and W, it would be rather large. An improve-
ment consists in replacing, in the definition of S, the expression "max(x, y) -
min(x, y)" by "max(x, y) mod. min(x, y)", where "mod," is the usual modulo
operator, except that (nA mod, A) is A instead of 0. In this case, a = logr
is an adequate repetition number, where r = (1 + v/2)/2 and Z = mazrx~ + 1.
(The Euclidean algorithm for the gcd is studied e.g. in [11].)

4.3 O t h e r e x a m p l e s

Several examples have suggested that the instantiation of a generic systolic array
is significantly easier than the design of a new array by the classical method.
We did not encounter any example for which the instantiation method proposed
here is more difficult than the space-time mapping method. However, the com-
munication scheme considered in this paper (Equation 3) turned out to be rather
restrictive and classical examples often require a slightly less elementary scheme,
that is :

input ; computation ; output. (10)

With the synchronous communication paradigm, "input" for a cell means
"output" for some neighbour, so the global scheme really is

input for odd cells I] output for even cells,
computation for odd cells,

input for even cells II output for odd cells,
computation for even cells.

A rather frequent additional refinement is to dissociate cycles related to dis-
tinct communication flows; an example is

a-input and b-output for odd ceils I[a-output and b-input for even cells,
a-computation for odd cells [I b-computation for even cells,

a-input and b-output for even cells II a-output and b-input for odd cells,
a-computation for even cells II b-computation for odd ceils.

The method we propose is easily adapted to any kind of communication
scheme, but the choice of an adequate communication scheme is left to the
designer. The solution is not unique; distinct schemes lead to distinct trade-off
between the number of cells, the size of the memory and the time of a typical
computation.

761

5 C o n c l u s i o n

We presented in this paper the very simple but powerful concept of generic
systolic array. Its properties have been stated and proved once for all, using
CSP-like notations. A new methodology for the mapping of algorithms on systolic
arrays is based on this concept. Because no a priori assumption is made on the
localization of the data, circuits can be derived which are different from those
obtained with a space-time transformation technique. Despite the fact that only
simple algorithms haw~ been derived here, this methodology is very promising.

R e f e r e n c e s

1. M. Anaratone et al., "Warp architecture and implementation", Proc. 13th Int.
Symp. on Computer Architecture, pp. 346-356, 1986

2. K.M. Chandy, J. Misra, "Systolic algorithms as programs", Distributed Comput-
ing 1, pp. 177-183 (1986)

3. K.M. Chandy, J. Misra, "Parallel Program Design: A Foundation", Addison-
Wesley, Reading, Mass, 1988

4. M.C. Chen, "Synthesizing VLSI architectures: Dynamic programming solver",
Proc. of the 1986 Int. Conf. on Parallel Processing, pp. 776-784, 1986

5. E.W. Dijkstra, "A discipline of programming", Prentice-Hall, New-Jersey, 1976
6. J.A.B. Fortes et al., "Systematic approaches to the design of algorithmically spec-

ified systolic arrays", IEEE Conf. ICASSP 85, vol. 1, pp. 300-302, 1985
7. P. Gribomont, "Proving systolic arrays", L.N.C.S. 299, pp. 185-199 (1988)
8. M. Hennessy, "Proving Systolic Systems Correct", ACM Toplas 8, pp. 344-387

(1986)
9. C.H. Huang, C. Lengauer, "An implemented method for incremental systolic de-

sign", L.N.C.S. 258, pp. 160-177 (1987)
10. R.M. Karp, R.E. Miller, S. Winograd, "The organization of computations for uni-

form recurrence equations", J.ACM 14, pp. 563-590 (1967)
11. D.E. Knuth, "The art of computer programming", vol. 1, Addison-Wesley, Read-

ing, Mass, 1968
12. H.T. Kung, C.E. Leiserson, "Algorithms for VLSI processor arrays", in "Introduc-

tion to VLSI systems", Mead and Conway (Eds), Addison-Wesley, Reading, Mass,
pp. 271-292, 1980

13. A.R. Martin, J.V. Tucker, "The concurrent assignment representation of syn-
chronous systems", Parallel Computing 9, pp. 227-256 (1989)

14. C. Mongenet, G.-R. Perrin, "Synthesis of systolic arrays for inductive problems",
L.N.C.S. 258, pp. 260-277 (1987)

15. M. Ossefort, "Correctness Proofs of Communicating Processes: Three Illustrative
Examples from the Literature", ACM Toplas 5, pp. 620-640 (1983)

16. S.V. Rajopadhye, R.M. Fujimoto, "Systolic array synthesis by static analysis of
program dependencies", L.N.C.S. 258, pp. 295-310 (1987)

17. M. Rein, "Trace theory and systolic computations", L.N.C.S. 258, pp. 14-33 (1987)
18. J.L.A. van de Snepscheut, J.B. Swenker, "On the Design of Some Systolic Algo-

rithms", J.ACM 36, pp. 826-840 (1989)
19. V. Van Dongen, "Mapping uniform recurrences onto small size arrays"

L.N.C.S. 505, pp. 191-208 (1991)

