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The paper describes ongoing work on a facet of software specification, namely system 
configuration, i.e. the specification of  the structure of the system and of the operations 
needed to build it. We want to verify the adequacy of Higher Order Typed Functional 
Languages (HOTFULs), like Pebble [Lampson&Burstal188], SOL [Mitchell&Plotkin 851 
and others [Cardelli 85, Cardelli&Wegner 851, to model the configuration facilities of 
modern languages for system programming like Ada, Chill and Modula-2 : no thorough 
study has been done in this direction, even if the literature is full of small scale sketches, 
which are used to claim that such languages are indeed adequate. We are using the new 
configuration concepts for distributed systems introduced on top of Ada in the Cnet project 
[Inverardi&Mazzanti&Montangero 85, Cnet 85] as a case study, since they provide a good 
test bed being an enhancement of Ada advanced configuration facilities. 
The main result is that checking correctness of a Cnet configuration can be reduced to type 
checking in a suitable HOTFUL. However, the process is not straighiforward enough, so 
that the question in the title is still open. As a side result, requirements have been assessed 
for a suitable HOTFUL: definability of (generally) recursive types, availability of the type 
of aU types and of a peculiar inheritance mechanism. 

1. Introduction 

In Ada, library packages and subprogram declarations without context clauses, and the related secondary 

units provide the elementary units of programming-in-the-large. They can be collectively referred to as 
modules, and are split in two parts, the interface (specification) and the implementation (body). Interfaces 
and implementations have been investigated in the literature thoroughly. Module generalizations play a 
critical role in the configuration process: genericity and subordination, are provided in Ada by generics 
and context clauses respectively. In both cases, new modules can be defined that depend on previously 
defined types, operations or even modules: Genericity allows for explicit parameterization of the interface, 
while subordination makes the implementation of a module a function of the implementation of another 
one. 
A further concept is crucial in software development, namely the notion of a collection of modules sharing 
some kind of property, together with the ability of establishing relations among collections. We will call 
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such groups of modules bubbles, following the proposal of Cnet [Inverardi&Mazzanti&Montangero 85, 
Cnet 85], where this concept was introduced in order to model, at the specification level, the notion of 

subsystem. We think it useful that the application language provides the user with concepts to structure a 

program following a design methodology. Indeed, this was the original purpose of bubbles: They impose a 

structure on the Ada program library, collecting library units into sets and constraining the units that can be 
imported by a module within a bubble. 

Bubbles were motivated by the specific configuration problem we had to face in Cnet: the specification (and 

the implementation driven by this specification) in Ada of the distributed structure of the system consisting 

of a set of"virtual nodes", each one having no visibility of the others, all sharing a unique global purely 

functional (i.e. without store) environment. It turned out that the features of Ada for configuration were not 

powerful enough to develop every component of a distributed software system as a collection of modules 

satisfying given constraints on the visibility of the rest of the system 1. 

Note that, although proposed to solve specific problems in the design of distributed systems, the concept of 

bubble is more general and, when abstracting from the specific properties required to collect modules 

together, responds to a common need of every configuration environment. The notion of subsystem or 

configuration to denote collection of modules is currently present ha many configuration environments (cfr. 
Mesa, Adele, Rationale .... ). 

The goal of the paper is a formalization of all these concepts - -  basic, generic, subordinate modules and 
bubbles - -  in the context of higher order typed functional languages. These languages are appealing, since 
they deal with all the concepts we need at the same level, as first-class objects. That is, modules and 

implementations are ordinary values, and hence they can be manipulated, computed, embedded in data 

structures. This is a "must" for a language that is used to express configurations or system models. 
Moreover, they use the same control structures for programming in the small and in the large, namely 

functional abstraction and application. Configuring a system, linking some modules, are no longer 

primitive concepts: They can be described as the application of explicit functions, whose static correctness 
(i.e. that implementations match their interfaces) is reduced to type checking. 

2. The language 

The language we use is an higher order language with explicit polymorphism, inheritance, recursion (for 
types also) and a type of all types. Its complete definition is given in tables 1 and 2; some preliminary 

acquaintance with higher order polymorphic languages (like Pebble [Lampson & Burstall 88], or the more 

stylized formal systems based on second order lambda calculus, see [Cardelli & Wegner 85] for an 
introduction) is needed. We will refer also to [Mitchell & Plotldn 85] for the description of abstract data 

types as existential types (dependent tuples). Here is a short discussion of the features of the language; 

some notational conventions are also introduced. 
The essential starting point is higher order typing, that is a type structure where types can be given to 

programs manipulating types. This can be achieved, in the simplest case, by abstracting a program over 

types: fun(T:Tp)a is a function which takes a type and returns a value (perhaps a type again, depending on 
the structure of a). The type of this function is AU(T:Tp)A, where A is the type we can assign to a under the 
assumption that variable T has type Tp (which is the constant representing the collection of types). In the 

general ease, AII(x:A)B is the type of dependent functions (Pebble's notation is x:A--->>B); its elements are 

1 In fact, modules in a bubble may share also some constraints on their internal structure, for instance clue to the physical 
support. This issue is not addressed in this paper. 
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the functions which, taken a term m of type A, give a result of type B[m/x] (where this last notation denotes 

the substitution of the term m for the free occurrences of x in B). When x is not free in B, AII(x:A)B is no 

longer a true dependent type, and we write it as A---->B. 

The product of two types A and B (AxB) is the type of the ordered pairs of terms of type A and B, 

respectively. We can generalize this notion by allowing the type of the second component of the pair to 
depend on the value of the first component. The type one obtaines in this case (which Pebble writes 

x:AxxB) is sometimes called an existential type, for its connection with higher order logic; we adopt its 

generalization to arbitrary depended tuples (x 1 :A 1 ,...Xn:An) where the labels x 1 ,...x n, allow also a selection 

by name of the different components. The term match (x 1,...xn)=a in b can then be seen as a generalized (and 

dependent) form of projection (variables x 1,_.x n are bound in b). As in the case of dependent functions, we 

maintain the usual notation for products, writing AxB for (x:A, y:B) when x is not free in B; in this case we 

will write also <a,b> for (x=a,y=b), and we define fst---fun(a:AxB)match (x 1 ,x2)=a in x 1; the definition for snd 

is similar. A "dot notation" for the selection of a component of a tuple will be also used: if 

p:(x 1 :A 1 ,...xn:An), then p.x i is shorthand for match (x 1 ,...Xn)= p in x i. Following the key idea of [Mitchell & 
Plotldn 85], generalized tuples and dependent functions can be used to assign a type to an implementation, 

and relate this type to the module interface: checking that an implementation fits an interface is then reduced 

to type-checking. 
The other type constructor of the language is the dependent sum constructor (denoted by square brackets), 

which generalizes the idea of disjoint sum. The elimination rule is a generalization of the case construct; in 

the expression case z=c of (x I .Yl=>bl)...(xn.Yn=>bn), c is the term over which we intend to perform the 
case, z is a fresh variable allowing the type of the whole expression to depend on c, the x-labels match the 

labels of the corresponding type definition and the y's are fresh variables, bound in the b's, which allow to 

express the dependency of the type of the result. 
Rule (Tp) asserts that the collection of types is itself a type; (rec) allows the construction of generic 
fixpoints, thus recursive types too. This two features are needed to deal with bubbles and contrast with the 
formalisms based on higher order logic (like the second order lambda calculus and its more recent 
extension note as Calculus of Constructions [Coquand & Huet 88]), where the lack of a fixed point 

operator requires the introduction of the appropriate induction scheme for any recursive definition. 

Inheritance, that is the availability of a notion of subtyping and its relation with type assignment as 
formalized by the second (trans) role, adds flexibility to the language. We are here interested in its role in 

describing configuration requirements as subtyping relations in the model of bubbles. We insist on a 

structural subtyping discipline [Wand 87, Cardelli 87, Cardelli 88], where subtyping is determined only 

by the structure of type definitions, as opposed to the different practice of those languages where one is 

allowed tof~,.'ce a subtype relation explicitely. 

The language has a unique flat space for names, which are introduced by the let construct: the notation "let 

ld.entif ier  : Type = term" means the introduction of the name Iden t i f i e r  for the term te rm whose type 
is Type. As an example, let us introduce the name Singleton, for the type possessing a single non divergent 

element, unit: 
let Singleton:Tp = AII(T:Tp)AU(t:T)T 

let unit: Singleton = fun(T:Tp)fun(t :T) t  

By using the type Singleton, we can define the (polymorphic) type constructor for lists: 

let List : Tp--~Tp = fun(T:Tp)rec(L:Tp)[n i l :Singleton,  cons t :TxL]  

~et nil : AII(T:Tp)List(T) = fun(T:Tp) [nil=unit] 
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let c o n s  : A I l (T :Tp )TxL i s t (T ) - - )L i s t (T )  = fun (T :Tp) fun ( (a , l i ) :T×L is t (T ) ) [ cons t=<a , l i> ]  

Finally, we will use [al,..., an] T as a shorthand for the list of n elements of type T. 

The reader will have noticed a similar background with Pebble (but with a cleaner type structure and the 
addition of inheritance) and the borrowings from [Cardelli 85]. A different approach to manage 
configuration concepts in the context of implicit polymorphism is the one of Standard-ML [Milner 85], 

where the full first class status of modules and implementations is given up, by considering them one level 
higher than ordinary functions [MacQueen 8812..As a consequence also the configuration functions (that 
is functions manipulating implementations) differ in level from ordinary functions (which manipulate plain 

values). However, since it is our belief that one should seriously attempt to program in the large with the 
same basic tools of programming in the small, that is to write configuration constructs in the same style of 
and with the same freedom allowed to standard programming, it seems crucial to maintain the first class 

status of interfaces and implementations, thus allowing their free manipulation. This has been the main 
reason for choosing the explicitly parametric polymorphism, as formalized in the extensions to second 
order lambda calculus. In these systems, types can be computed during evaluation, and one can parametrize 

not only over types, but also over type constructors. 

3. Modelling Ada-Cnet 

The approach we take to model system configuration by type checking is the following: we define a 
function [ ] translating Ada-Cnet programs into terms of  the language in section 2; the function is defined 

in such a way to express the configuration requirements over the original program as type constraints. We 
can thus put forward the following 

Def in i t ion  of configuration correctness: An Ada-Cnet program P is correct w.r.t. Ada-Cnet 
configuration constraints if I-P] is a sequence of well typed expressions. 

It should be stressed that the translated program itself is not a definition of the binding process, but only a 
set of expressions whose wetl-typedness asserts that the original program can be linked safely. 

The translation has been worked out taking into account design methodologies also (e.g. a body must be 
developed according to the modular structure of its specification). Motivations and comparisons with 
similar work in the literature are reported in [Inverardi&Martini&Montangero 88, Martini 88] extensively. 

The approach relies upon the basic idea [Mitchell&Plotkin 85] of modelling the specification part of the 
ADT with an existential type, and its implementations with different elements of this type (that is pairs, or, 

more generally, mples). 
Modules can then be represented as abstract types, therefore adhering to some extent to the principle: 

(-) An interface corresponds to an existential type and 
any implementation is an object of the type corresponding to its interface. 

The principle can be obviously justified for basic modules, considered as a particular form of abstract data 
types. As for generic and subordinate modules, it seems to suggest that they should be thought of as 
objects of the very same kind of basic modules. However, language designers well know that genericity 

2Technically. the full impredicative structure of the second order lambda calculus is abandoned, in favor of a predicative 
cumulative hierarchy, like in Martin-L6f's Imuitionistic Type Theory [Martin-LOf 73, Marfin-I_6f 79]; err [MacQueen 86]. 
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and subordination hide much more complex dynamic concepts than simple modules. In fact, [MacQueen 

86] already objects to the simple view of (o), by showing the unpleasant consequences it has when one tries 

to build complex hierachies of  modules. Therefore we will abandon the principle whenever convenient 

from a modelling point of view. We will describe in the following the model (the translation) we propose 

for the four concepts discussed in the introduction. 

Basic  m o d u l e s  

Consistently with the discussion above and with principle (.), a package specification (basic, i.e.with no 

context clauses) is mapped to an existential type which explicates the interface structure (names, functions, 

etc.). The body is any value whose type is its interface3: 

[ package spname is 

T : Type; 

f : Int -> T; 

e n d ;  ] = I ~  spname : Tp = (T:Tp, f : Int ->  D 

package body spname is 

T is ... ; 

f is ... ; 

e n d  H = let spname_imp : spname = (T = [...~, f = [...]]) 

In order to model bodies of basic modules as they are defined in real languages like Ada, we need to extend 

this approach allowing implementations whose structure might be more complex than it results from their 

interface: bodies have a local declarative part besides that exported from the interface. This case will be 

modelled by inheritance, introducing the notion of subtyping. Consider a stack: the spec will be mapped 

into 

let Intstack: Tp = (St:Tp, empty:St, push: lntxSt  - - >  St, pop:St- ->St ,  top:St- -> lnt )  

and a list based implementation into (recall the definitions of the terms List, nil and cons from Section 2): 

let IntStack_List_imp: Intstack = (St=List Int, empty=nil  Int,push=cons Int,pop=cdr Int,top=car Int) 

Another implementation could be a tuple containing more components, eg a new operation g used by push: 

subtyping must be such that 

(St=List Int, empty=nil Int ,g=lnt--> Int,push . . . .  g...,pop=cdr Int,top=car Int): Intstack 

holds. With respect to the usual notion of  subtyping there is the need to be able to insert new components 

among those of the supertype, not just at the end. This is exactly the role of  the rule (3) for subtypes. 

3We are using a kind of pidgin Ada, to make the translation stlaighfforward, apart from the crucial points related to 
modularity issues. A number of problems should be tackled in order to have a complete translation scheme of full Ada. For 
instance, in this paper we consider only a functional subset of Ada, and packages exporting private types only. Moreover, we 
assume that the private part is in the body, as it should be logically, and disregard separate (re)compilation issues. Finally, 
some ingenuity may be necessary to lranslate references to the names exported by the packages correctly. 
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Generic (or polymorphic) modules 

Generic modules come with a mechanism that allows their specialization. Again, the typical example is the 

Stack module, to be instantiated on the type of the stacked objects. Following Pebble, we translate a 

genetic specification as a function which takes the genetic parameters and returns the type of the 
instantiated body, i.e. a genetic specification is a polymorphic function over the generic parameters: 

[ generic 
T : Type ; 

package spname is 

f : Int -> T; 

e n d ;  ~ = let spname : AII(T:Tp)Tp = tun(T:Tp) ( t in t  - - >  T) 

Analogously, a generic body is a function over the parameter, which, once applied, returns an element of 

the type expressing the instantiated specification. 

package body spname is 

f is .,,T.., ; 

e n d  ~ = let spname_body : AIl(T:Tp)(spname (T)) = fun(T:Tp) (f= ~...T...I) 

So, the dependencies between Stack and Item, the type of the stacked elements, are modelled by 

let GenStack : AI l ( l tem:Tp)Tp = 

fun(l tem:Tp) (St :Tp,empty:St ,push: l temxSt-->St,pop:St-->St, top:St--> lnt) )  

and an implementation of GenStack is a polymorphic function over Item: 

let kistStack : AI l ( I tem:Tp)(GenStack Item) = 

fun(Item:Tp)(St=List Item,empty=nil Item,push=cons Item,pop=cdr Item,top=car Item) 

At first glance, this approach has the drawback that a "generic module interface" is no longer a type and we 

can no longer characterize its impIementations as the objects of that type: However, there is a tidy 

relationship between instantiated implementations and modules, as in "ListStack Int : GenStack lnt". 
The link between the implementation and the specification is given by the identifier GenStack in the type 

expression AIl(Item:Tp)(GenStaek Item). Note that GenStack and ListStack have the same type, since the term 

(Genstack Item) reduces to Tp under p-conversion. 

Compared to other approaches, we found that trying to maintain (o) at the level of genetics resulted in 
involved modelling [Inverardi&Martini&Montangero 88]. Indeed, basic modules are the actual units of 
programming in the large, genetics being instead tools to produce new basic modules. Therefore they 
must be modelled differently. Subordinate modules lie somewhat in between, as we will see immediately. 

Subordinate modules 

Module A is subordinate to module B if (the interface or the body of) A uses identifiers defined in (the 
interface of) B. In Ada, this is the case of packages with context clauses: A is subordinate to B if it 
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"imports" it, by the clause w i t h  B. Since a subordinate module is produced out of known elements, its 
specification is naturally translated as an existential type expression explicating the dependencies from the 
imported modules. In particular this dependency is conceptually different from the one of generic modules, 
being static rather than dynamic: such an interface cannot be instantiated; only the body of the imported 
module can be different in distinct implementations of A. For these reasons we differ from Pebble, where 
no distinction is made between genericity and subordination. 

[ with iname; 

package spname is 

T: type; 

f : iname, S -> T; 

end; ] = ~ spname : Tp= (iname_imp: inarne, T:Tp, f : inameimp.S - >  T) 

package body spname is 

T is ...; 

f is ...; 

end ] = let spname_body : iname - > spname = 

fun(B: iname) (iname._imp=B, T ffi [...], f = [...]) 

Like in the generic case, the correspondence (.)  does not hold, at least in the sense that we are not 
translating the body as a value of the type of its interface. However, any actual implementation of the 
subordinate modu le  (obta ined as spname_body (some value of type iname) ) has type spname. 

Generic Instantiation 

[with genname; package giname is new genname 

let giname : Tp = (F:AIl(p)genname(p), P:genname(parameters)) 
let giname_imp : (AIl(p)genname(p) -> giname = 

fun(f:AIl(p)genname{p)) (F = f, P = F(parameters)) 

(parameters) ;] = 

where p is the list of formal parameters of genname. For instance, consider 

with Genstack; 

package Intstack is new Genstack(Znt); 

We obtain: 

let Intstack: Tp = (F: AIl(item:Tp) Genstack (Item), P: Genstack(lnt)) 

let Intstack Body : (All(Item:Tp) Genstack (Item)) -> lntstack = 

fun (f: AIl(Item:Tp) Genstack (Item)) (F= f, P=F(Int)) 

Interlude 

Let us recall that the main goal of the translation is not the definition of the binding process of an Ada 
compilation, nor of the linking process, but only the definition of a set of expressions whose well- 
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typedness asserts that the original program satisfies the intended configuration constraints. 

However, the translation has been designed so that the resulting terms can be used to express binding and 

linking processes: in a sense, they express the most general functionality that may be attached to a module 

in the library. For instance, modelling the body of a subordinate as a function, naturally expresses the fact 

that bindings are delayed, whenever a module body is put in the library before the bodies of the modules it 

imports. On the other hand, bindings are also naturally expressed as function application, when the 

imported bodies are supplied. A similar argument applies to genetics and their use. 

At the same time, care has been taken to ease the description of binding and linking strategies that take into 
account methodological aspects (e.g. that an implementation must have the same modular structure as its 
own interface). For instance, the process yielding an actual implementation of Intstaek is described by the 

term lntstack_Body(Genslack_Body), that describes the method that has been used to derive it. This is far 

different from what we would have obtained by modelling the situation as a simple environment extension, 
as in: Intstack' : Tp = Genstack (Inl). In this case, indeed, implementations of Inlstack' can be obtained in a 

non modular way, that is without reference to the fact that Instack' is actually built from a genetic. 

Another issue is the following: the translation yields components that are redundant. For instance, in the 

example of Intstack, the implementation contains also the tool used to build it. However, the relevant 
components can be retrieved in the same way from the terms describing the interface and the 

implementation: 
snd (Intstack_Body(Genslack_Body)) :snd Inlslack 

Redundancy may be introduced also by duplication, whenever more than one module import the same 
module A: a term containing A only once, whose type is a subtype of all the the importing interfaces, can 

be written to describe an irreduntant implementation. 

B u bble s  

We recall that, for the purposes of this paper, a bubble is a collection of interfaces closed with respect to the 

operation of importing interfaces, that is forming import lists of elements in a bubble and building with 
them a new interface must give an object still belonging to the same bubble. 

The actual implementation [Inverardi&Mazzanti&Montangero 85] provides three pragmas for creating 

bubbles ( m a k e b u b b l e ) ,  inserting a module into a bubble ( i n t o b u b b l e ) ,  extending a bubble 
( e x t  end).  Examples of use of the ftrst two operations, to create two bubbles F©O and FIE  and to insert 

modules ADT, ADText in the first one and A in the second one, are given in the following: 

makebubble (Foo); makebubble (Fie); 

intobubble(Foo); intobubble (Fie); 

package ADT is package A is 

T : Type; S : Type; 

make : Int -> T; g : Int -> Int; 

end; end; 

intobubble (Foo); 

with ADT; 

package ADText is 

f : ADT.T ->ADT.T 

end; 



267 

Attempting to insert the module 

with ADT, A; 

package WRONG is 

h:ADT.T ->A.S 

end; 

into either bubble will result in an error, since neither of them provides the needed visibility. 

Bubbles can extend the visibility they offer: e x t e n d  (FLee Foo)  ; will allow the insertion in FEE of 

modules importing modules in FOO. Thus the following is correct: 

intobubble (Fie); 

with ADT, A 

package OK is 

h:ADT.T ->A.S 

end; 

In order to model a bubble we would have liked to express it directly as a type, namely the type of the 

interfaces belonging to it. This amounts to characterize with a type a collection of  types; unfortunately 

HOTFULs do not allow such a characterization: Types have type Tp and there is no way to distinguish 

them according to their structure. Then bubbles are described as a class of  data structures where interfaces 

are supposed to be inserted into after a consistency check, for which it is necessary to keep track of  the 

import list of every library unit which is inserted. 

The requirements contained in the discussion above are modelled by the following term Bubble, which can 

be seen as the type of bubbles: 

let Bubble : Tp = (B:Tp, outof  : B -> Tp, into : L ist (B)xTp -> B) 

An object of  this type will represent a specific bubble. Note how a specific bubble (an object of  type 

Bubble) comes explicitly with the functions needed to use the objects (the interfaces, in the intended 

interpretation) in it. Given a bubble Bbl : Bubble; the function outo! allows access to the raw interface; into 

provides for the consistency (visibility) check. 

Type B has to be recursive. Indeed, the importing interface has to be inserted into the same bubble Bbl of 

the imported interfaces: that is, given an interface S importing A 1 ..... A k, we want to define a term built out 

of S, A 1 ..... A k whose type is the same as that of  A 1 ..... A k, only if  A 1 ..... A k belong to Bbl. Our choice is 

the following: 

< [A1 ..... Ak] BbI.B ' [tag = S] > : BbI.B 

where tag is built systematically from the bubble name. Therefore, the type of the interfaces in Bbl is 

rec(T:Tp) List(T) x [Bblname:Tp] 

The second component is a union (+) type because it allows to model the extend operation easily. Here is a 
bubble: 
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let Bbl l  : Bubble = ( B = rec(T:Tp) List(T) x [Bbl lname:Tp] ,  

outof = fun(b:B) case snd(b) of Bb l lname.x  => x, 

into=fun(( imp,int) :List(B)xTp)<imp,[Bbl l  name=int]>) 

To insert a basic interface, say (T:Tp, new:lnt -> T), into Bbll, with name inter1 : 

let inter1 : Bbll .B = Bbll.into (< nil(Bbll .B), (T:Tp, new:lnt -> T)>) 

We can use outol to obtain the interface contained in an object (recall that = is the syntactical conversion of 

terms): 

Bbl l  .outof( inter l)  = (T:Tp, new : l n t ->  T) 

The insertion in Bbll of  an interface importing inter1: 

let inter2 : Bb l l .B=Bb l l . i n to  (< [inter1], (a:Bbl l .outof( in ter l ) ,  f :a .T->a.T)> 

Again, we can access interface inter2 by using outof: 

Bbl l  .outof(inter2) = (a:Bbl l  .outof( interl) ,  f :a.T->a.T) = (a:(T:Tp, new:lnt - >  T), f :a.T->a.T).  

A new bubble can be obtained by using a different label, Bbl2name, in the variant type forming B: 

let Bbl2 : Bubble = ( B = rec(T:Tp) List(T) x [Bbl2name:Tp], 

outof = fun(b:B) case snd(b) of Bbl2name.x => x, 

into=fun((imp,int): List(B)xTp)<imp,[Bbl2name=int]>) 

The extension of Bbll by Bbl2, Bbl3 can now be defined, such that inter1 : Bbl3.B and inter2 : Bbl3.B: 

let Bbl3 : Bubble = ( B= rec(T:Tp) List(T) x [Bbl l  name:Tp, Bbl2name:Tp], 

outof = fun(b:B) case snd(b) of Bbl l  name.x => x, 

Bbl2name.x => x, 

into = fun((imp,int) : List(B)xTp)<imp,[Bbl l  name =int]>) 

The subtyping rules prove that Bbl3.B is a supertype of both Bbll .B and Bbl2.B: in this sense Bbl3 can then 

be considered as the extension of  Bbll by Bbl2: Extension is the basic operat ion for subsystem 

composition. 

We  are eventually ready to complete the translation of an Ada-Cnet program, considering the Ada-Cnet 

pragmas makebubble,  intobubble and extend, which allow to control the bubble world wrt to basic and 

dependent interfaces. 

[ m a k e b u b b l e  bname]l = let bname : Bubble = 

( B = rec(T:Tp) List(T) x [bnamelabel:Tp], 
outof = fun(b:B) case snd(b) of bnamelabel.x => x, 

into= fun((imp,int) : List(B)xTp)<imp,[bnametabel =int]>) 
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[intobubble bname; 

with AI,... , Ak; package spname is S end ]= 
I~ spname:bname.B=bname.into(< ~1 ..... A~bname.B,S>) 

wheresisthe~ypedefmedin [with AI,..., Ak; package spname is S end]. 

[extend 
( 

(bnamel ,  bname2) ] = let bnamel :Bubb le  = 

B=rec(T:Tp) List(T) x [bnamellabel:Tp, bname21abel:Tp], 

outof -- fun(b:B) case snd(b) of bname l label .x => x 

bname21abel.x => x, 

into = fun((imp,int) : List(B)xTp)<imp,[bnamellabel =int]>) 

The translation of the previous example is given in figure 1: The violation of a constraint in the package 

~Ot~G is detected as a type mismatch. 

4. Conclusions 

This work is a first step towards modelling the structure of software applications for a real system, namely 

the Cnet system, using HOTFULs. 

The first lesson we learned is that, when used in real contexts, HOTFULs, despite what is claimed in most 

literature, are not such an easy and flexible tool to specify configuration issues. If on one side it is very 

natural to talk of implementations in this framework and there are evident advantages when considering the 
specification of concepts like those we have discussed in section 3, on the other side it is more difficult, as 

in the case of bubbles, to characterize sets of specifications (modules). The solution we adopted, in fact, 

does not appear very natural, since in order to be able to reason about sets of specifications their 
"symbolic" manipulation is required. Indeed, a specification has to be turned into a more complex type, to 

be recorded in a bubble: Such a manipulation is the purpose of function into that can be reversed by outof 

which in tnrn serves the purpose of retrieving the relevant information out of the bubble. We think that 
some work has to be done in type theory, in order to introduce ways to characterize types according to their 

structure. 

The second lesson regards the better comprehension we gained of the configuration model which had been 

proposed in the linguistic context of Ada for the Cnet system. From this point.of view the formalization 

helped us to review part of the semantics of bubbles which were initially viewed as objects evolving 

through different states, due to an implementation bias of our understanding. Furthermore, it provided a 
clear semantics for the Ada concepts (generics, with-clauses) including their implementations, thus making 
available a firm base on which all the configuration operations available in a real programming environment 

( e.g. recompilation, linking, version managing) can be precisely defined. 

The third lesson concerns the use of type checking as a tool to check the correctness of a system under 

development with respect to configuration constraints. From a foundational point of view, we believe our 

work shows the feasibilty, under certain assumptions over the type structure, of a reduction of 
configuration to type checking. From a practical point of view, the impact of such an approach on the 

design of languages for programming in the large might be limited, unless type checking can be performed 

effectively. In fact, the type checking problem for our language is undecidable, for the presence of 

recursive types. Nevertheless, Luca Cardelli 4 has conducted extended experiences with a language 

4personal communication. 
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Example 

makebubble (Foo); 

intobubble(Foo); 

package ADT is 

T : Type; 

make : Int -> T; 

end; 

intobubble (Foo); 

with ADT; 

package ADText is 

f : ADT.T ->ADT.T 

end; 

makebubble (Fie); 

intobubble (Fie); 

package A is 

S : Type; 

g : Int -> Int; 

end; 

intobubble (Fie); 

with ADT,A; 

package WRONG is 

h:ADT.T ->A.S 

end; 

let Foo: Bubble = 

( B = rec(T:Tp) List(T) x [Foolabel:Tp], 

outof = tun(b:B) case snd(b) of Foolabel.x => ×, 

into = fun((imp,int) : List(B)xTp) 

<imp,[Foolabel =int]>) 

let ADT : Foo.B = 

Foo.into (ni l(Foo.B), (T:Tp, new:lnt - >  7)) 

let ADText :Foo.B = 

Foo.into ([ADT], 

(a:Foo.outof(ADT), f :a .T->a.T))  

let Fie : Bubble = 

( B = rec(T:Tp) List(T) x [Fielabel:Tp], 

outof = fun(b:B) case snd(b) of Fielabel.x => x, 

into = fun((imp,int) : List(B)xTp) 

<imp,[Fielabel =int]>) 

let  A : Fie.B = 

Fie.into (nil(Fie.B), (S:Tp, g : l n t ->  Int)) 

let WRONG : Fie.B = 

Fie.into ( [ADT, A ] ,  

(b:Fie.outof(ADT), 

a:Fie.outof(A), h:b.T - >  a.S)) 

intobubble (Fie); 

with ADT, A 

package OK is 

h:ADT.T ->A.S 

end; 

-- type checking fails, since ADT is invisible from inside bubble Fie, i.e has not type Fie.B. 

extend (Fie, Foo) ; let Fie : Bubble = 

( S = rec(T:Tp) L is t (T)x  [Fielabel:Tp, Foolabel: Tp], 

outof = fun(b:B) case snd(b) of Fielabel.x => x 

Foolabel.x => x, 

into = fun((imp,int) : List(B)xTp) <imp,[Fielabel =int]>) 

let O K  : Fie.B = 

Fie.into ([ADT, A ] ,  

(b:Fie.outof(ADT), a:Fie.outof(A), 

h :b .T ->  a.S)) 

Figure 1. 
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similar to ours, reporting efficient type checking in all practical situations. Additional study and experience, 
however, is in order to carefully assess the features of the language with respect to the performance of the 
type checker. 
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