
On the Existence of Statistically Hiding Bit
Commitment Schemes and Fail-Stop Signatures

Ivan B. Damgdrd *, Torben P. Pedersen ** and Birgit Pfitzmann *

Abstract. We show that the existence of a statistically hiding bit com-
mitment scheme with non-interactive opening and public verification
implies the existence of fail-stop signatures. Therefore such signatures
can now be based on any one-way permutation - the weakest assump-
tion known to be sufficient for fail-stop signatures. We also show that
genuinely practical fail-stop signatures follow from the existence of any
collision-intractable hash function. A similar idea is used to improve a
commitment scheme of Naor and Yung, so that one can commit to sev-
eral bits with amortized 0(1) bits of communication per bit committed
to.
Conversely, we show that any fail-stop signature scheme with a property
w e call the almost unique secret key property can be transformed into a
statistically hiding bit commitment scheme. All previously known fail-
stop signature schemes have this property. We even obtain an equivalence
since we can modify the construction of fail-stop signatures from bit
commitments such that it has this property.

1 Introduction

In this section, we introduce the two main actors on the scene, fail-stop signatures
(FSS) and statistically hiding bit commitments.

Fail-stop signatures were introduced in [16]. Further constructions appear in
[13, 14, 5, 61. A formal definition of the concept and a survey of the recent most
efficient schemes will appear in [12].

Before going into the properties of FSS schemes, let us discuss some aspects
of ordinary digital signatures: In an application of such signatures, what should
happen if someone shows up with a message and a valid looking signature from
user A, but A claims that she never signed the message? Suppose the signature
scheme is based on a computational problem, P, which everybody accepts can-
not be solved in polynomial time. Based on this one could claim that it is not
reasonable to assume that the system was broken by an enemy. So either A is

* Aahus University, Matematisk Institut, Ny Munkegade, DK-8000 Aarhus C; Den-
mark. e-mail: ivan@daimi.aau.dk,

** Aarhus University, Matematisk Institut, Ny Munkegade, DK-8000 Aarhus c,
Denmark. e-mail: tppedersen@daimi.aau.dk. Supported in part by the Carlsberg
Foundat ion.

*** Universitat Hildesheim, Institut fiir Informatik, Marienburger Platz 22, D-31141
Hildesheim, Germany. e-mail: pfitzbQinformatik.uni-hildesheim.de.

D,R, Stinson (Ed.): Advances in Cryptology - CRYPT0 '93, LNCS 773, PP. 250-265, 1994.
Q Springer-Verlag Berlin Heidelberg 1994

251

lying, or she must have stored her secret key insecurely, and should therefore be
held responsible in either case.

However, this argument sweeps under the rug a very important point: we
always have to choose particular instances of the problem for each user, and the
discussion should actually refer to how hard this particular instance is to break.
If we are using RSA, for example, we have to decide on a size of moduli to use.
Even if we believe that factoring is not in polynomial time, this does not answer
questions like: “are 512-bit moduli secure enough?”. This is a question about
the state of the art of practical factoring, and does not have much to do with its
complexity theoretic status.

In a practical situation, it is often the case that individual users have only
very limited computing power available. This of course limits the sizc of problem
instance they can use, but not the amount of computing power that might be
used to break those instances. In such a situation, depending on the practical
circumstances, the possibility that A is not lying and someone broke her key, is
perhaps not so unreasonable after all.

This raises a natural question: is it possible at all to distinguish between on
one hand the case where A is lying or has leaked the secret key, and on the other
hand the case where someone with a large (unexpected) amount of computing
power has broken the system?

This is precisely what FSS schemes enable us to do. The crucial property
that distinguishes FSS from ordinary digital signatures is that there are sev-
eral possible secret keys corresponding to a given. public key. Even an infinitely
powerful enemy cannot guess from publicly available information which of the
possible secret keys is known t o the signer.

Since usage of different secret keys in general leads to different signatures, it
is impossible for the enemy to predict which signature the signer would producc
on a given message, if it has not already been signed.

Furthermore, from two different signatures on the same message, A can pro-
duce what is known as a proof of forgery. But if she has only the signature
available that she would produce herself, it is not feasible for her to produce
such a proof.

Thus if a powerful enemy tries t o frame A and submits a message seemingly
signed by A, with overwhelming probability the signature will not be the one
A would produce herself, and A can therefore respond with a proof of forgery.
On the other hand, A cannot falsely repudiate her own signature, if it has in
fact not been forged, unless she herself breaks the computational assumption.
(Thus even in this case, the proof of forgery correctly indicates that someone
with unexpectedly large computing power has broken the scheme.)

In this paper, we show that there is an intimate connection between sta-
tistically hiding bit commitment schemes and FSS schemes. A bit commitment
scheme is a protocol that party A can conduct with B to commit herself to a
bit b without revealing to B (or anyone else) the value of b. At a later time,
A can open the commitment and convince B about the value that wzls chosen
originally, i.e., it is not feasible for A to open a commitment to reveal both b = 0

2 52

and b = 1. A commitment scheme is said to be statistically hiding if B gets only
negligible Shannon-information about b prior to the opening of the commitment.
Such bit commitment schemes are extremely important because their existence
implies perfect or statistical zero-knowledge arguments for any problem in NP.

Concretely, we show how to construct FSS schemes from any statistically
hiding bit commitment scheme with non-interactive opening and public verifica-
tion (see below for details). This result is also contained more or less implicitly
in [13]. Also the result was discussed informally, prior to the work on this pa-
per, by Moti Yung and Birgit Pfitzmann. Our contribution in this respect is to
somewhat simplify the construction and to identify the properties needed from
the bit commitment scheme.

By the work of Naor et al. ([ll]), this means that FSS schemes can be based
on any one-way permutation. Before, FSS schemes were only known to follow
from the existence of claw-free permutations.

We also show that any collision-intractable hash function can be used to
build a secure FSS scheme. If the hash function is efficient, like MD4 [7] or SHA
[15], say, then the resulting FSS scheme is practical.

Conversely, we show that any FSS scheme with a property we call the almost
unique secret key property, can be transformed into a statistically hiding bit
commitment scheme. This property means that it is infeasible for a signer to
compute more than one significantly different secret key corresponding to her
public key; see below for details. All previously known FSS schemes have this
property. Finally, we show that the existence of FSS schemes with this property
is in fact equivalent to the existence of statistically hiding bit commitments with
non-interactive opening and public verification.

2 Definitions and Notation

2.1 Fail-Stop Signatures

For the results in this paper, it is sufficient to consider fail-stop signature schemes
that allow just one message to be signed. Based on [12] (see also [13]), the
definition of such schemes is now sketched.

A fail-stop signature scheme consists of five parts: a protocol for generating
the keys, a method for signing, a predicate for verifying signatures (a signature
satisfying this predicate is called acceptable), a method for constructing proofs
of forgery and a predicate for verifying proofs of forgery (a proof satisfying this
predicate is called valid). The methods for producing signatures and proofs of
forgery take the secret key as input, and the public key is input to the compu-
tation of the two predicates.

Unlike usual digital signatures, the key generation is a two-party protocol,
which is executed by the signer A and a center B trusted by the recipients.
This is necessary to ensure that the signer does not generate a pair of keys for
which she can prove her own signatures to be forgeries. A or B may reject in
key generation, but if both parties are honest, this should only happen with

253

negligible probability. We remark that one can always do without a key center
(at the expense of efficiency), by letting every recipient play the role of B .

Obviously, these parts must satisfy that if the keys are generated correctly,
then correct signatures and correct proofs of forgery are accepted by the cor-
responding verification methods. The more interesting parts of the definition
are

- Security for the recipient: It is infeasible for a polynomially bounded signer
to produce an acceptable signature and a valid proof that it is forged.

- Security for the signer: It is impossible for a forger with unlimited computing
power to produce a signature that the signer cannot prove to be a forgery.

A fail-stop signature scheme usually has two security parameters: k for the se-
curity of the recipient and u for the security of the signer.

To define the security of the recipient in more detail, we consider the following
scenario involving the key center, B , and a possibly cheating signer, A: First A
and B generate a pair of keys, and then A outputs a triple (m, s,pr).

Definition 2.1 A fail-stop signature scheme is secure for the recipient with re-
spect to the security parameter k if for all c > 0 and for all polynomially bounded
signers, A, the following holh for suficiently large k: The probability that s is
an acceptable signature on m and pr is a valid proof of forgery is at most k-'.
This probability is over the random coins of B and A.

In order to define the security of the signer, we consider a cheating center, B ,
possibly with unlimited computing power. As the signer must be secure even if
the center cooperates with future recipients, it is sufficient that the center itself
cannot construct forgeries that A cannot disavow. Consider the scenario where
first A and 3 execute the key generation protocol. This results in a secret key,
sk, and a public key, pk. B's view of this protocol is denoted by viewg (random
bits and all messages). Then B outputs a pair (mo, SO), where SO should be an
acceptable signature on mo.

Let SK be the set of possible secret keys given viewg. SK is equipped with
a probability distribution induced by the random coins used by A during the
key generation. Then Good is defined as the set of pairs (pk,viewg) such that
for all mo, so and with probability at least 1 - 2-" over the choices of possible
secret keys sk in SK, A can prove that SO is a forgery using sk as the secret key.

Definition 2.2 A fail-stop signature scheme is secure for the signer with re-
spect t o the security parameter u, if the probability that A accepts the keys and
(pk,viewg) $ Good is at most 2-O. (The probability i s over A's coins).

Intuitively, this means that only with very small probability (5 2-O) can B
make A accept a pair of keys for which she has probability less than 1 - 2-" of
proving forgeries.

A complete definition also has to take into account chosen message attacks.
However, our construction of commitments from FSS does not need security
against such attacks, and for the FSS schemes we construct, it is easy to see

254

that such attacks make no difference. Hence, we stick to this somewhat simpler
definition.

Intuitively, these definitions imply that a cheating signer cannot compute just
any secret key that is possible given the public key. If she could, she could prove
her own signatures to be forgeries by signing using one secret key and using a
different key in the proof. All fail-stop signature schemes in previous literature
have an idealized version of this property: No matter how the (polynomially
bounded) signer executes the key generation, she cannot compute two different
secret keys that are both possible given the public key. We call this the unique
secret k e y property. In the following, we use a relaxed version of it, the almost
un ique secret k e y property: Although the signer might be able to find more than
one secret key fitting a public key, she cannot not find significantly diflerent ones.
Keys are “not significantly different” if they lead to equal signatures. This can
be formalized by introducing a polynomial-time computable mapping K on the
secret keys with the intuitive meaning that ~ (s k) is the part of sk that makes a
difference in the signatures.

Definition 2.3 A fail-stop signature s c h e m e has the almost un ique secret k e y
proper t y af there are a polynomial- t ime computable predicate Fits and a polyno-
m i a l tame computable mapping K wi th t h e fol lowing properties:

- If the s igner follows the k e y generat ion protocol, the resulting secret and
publ ic key , sk and p k , always fig1 Fi ts (sk ,pk) = 1.

- No probabilistic poly- t ime bounded s igner can execute the k e y generat ion pro-
tocol w i t h the hones t k e y center and compute skl,skZ such that ~ (s k l) #
~ (s k z) and Fits(sk1,pk) = Fits(sk2,pk) = 1 with more t h a n superpolyno-
m i a l l y s m a l l probability.

- If sAl and skz sat is fy F z t s (s k 1 , p k) = F i t s (s k 2 , p k) = 1 and ~ (s k ~) =
n(skZ), t h e n f o r a n y message, the signature produced w i th slc1 equals t he
o n e produced with s k z .

For a concrete FSS scheme, there will typically exist a function that computes
the public key from a secret key. Then Fits can be constructedfrom this function.
Furthermore, note that if K is the identity, the third property is no restriction,
and one just obtains the unique secret key property.

All known schemes (see [13, 14, 5 , 61) have the almost unique secret key
property, although one can easily construct artificial schemes without it.

2.2 Bit Commitments

We define a bit commitment scheme as a pair of two-party protocols, namely
the commit and the reveal protocol. They take place between parties A and B,
where A is the party committing herself. The participants are modeled in the
standard way as interactive probabilistic Turing machines. As before, the view
of a participant is the bit string consisting of his own coinflips concatenated by
all nessages sent in the protocol. X will denote any machine playing the role of
X in the protocol.

255

For the commit protocol, A gets as input a bit b. We assume that B knows
some a priori information about b, such that b = 0 with probability 6, where
S may be different from 1/2. In addition both parties have access to a security
parameter k. The concatenation of all messages sent in the commit protocol
is called the commitment. In some concrete schemes, it makes sense to define
the commitment its a subset or a fuiictiou of the messages. We have chosen our
definition of a commitment for simplicity. A or B may reject in the commit
protocol, but if both parties are honest, this should only happen with negligible
probability.

For the reveal protocol, A gets as input her view of the commit protocol,
while B gets the commitment as input. At the end of the reveal protocol, B
outputs r e j e c t , accept 0 or accept 1. The intuitive meaning is that either B has
detected cheating by A, or he accepts that A has opened the commitment to
reveal either 0 or 1.

We will only consider commitment schemes with non-interactive opening,
i.e., where the reveal protocol consists of A sending one message to B.

A statistically hiding bit commitment scheme must satisfy two properties:

- Security Property: For any B , let bias denote 3 ’ s advantage in guessing b
given fi’s view 21 of the commit protocol, ie., bias = (6 - Pro@ = 0 1 .]I.
Then the expected value of bias is at most 2 - k . The probabilities are taken
over the coinflips of A.

- Binding Property: Let A be any polynomially bounded machine that executes
the commit protocol with B , and then outputs two strings S O , S ~ .

Let p (& k) be the probability that B outputs accept b on input S b in the
reveal protocol, for both b = 0 and b = 1. The probability is taken over the
coinflips of B and A. Then p (A , k) is superpolynomially small as a function
of k.

We require an exponential decrease of the bias in the security property. However,
this is not a significant restriction, since: standard ”XOR-ing” techniques can be
used to improve weaker schemes such that they satisfy the definition. Moreover,
most practical examples known in fact have a bias of 0.

Note that we have built into the model two properties that the bit commit-
ment scheme must satisfy in order for the result in the next section to work:
first non-interactive opening must be possible, as mentioned; secondly B must
be able to verify the opening based on the commitment only. This means that
anyone who trusts that a given commitment is the result of a conversation with
B can verify the opening without knowing B’s coinflips. Hence the term public
verification. This property is necessary in the construction of a FSS scheme to
ensure that everybody can verify signatures.

3
Functions

Fail-Stop Signatures from Bit Commitments and Hash

In this section, we assume that we are given a statistically hiding bit commitment
scheme as defined above, and will use this to build an FSS scheme. The basic

256

idea is very similar to Lamport and Diffie’s one-time signatures.
We will only show how to sign a 1-bit message -this easily generalizes to any

number of bits. Recall that an FSS scheme uses two security parameters, k and u.

KEY GENERATION
In this phase, the key center B and user A execute 40. instances of the com-
mit protocol, which is executed with security parameter k’ such that k‘ 2 Ic
and k‘ 2 20 + 4. For each instance, A chooses randomly and uniformly the
bit to commit to. The resulting commitments are organized in 20 pairs called
(Co,;,Cl,;), i = 1,. . . , 20 . The public key is the set of commitments, while the
secret key is the set of (4u) strings known by A that will open the commitments.
A stops and rejects the keys, if she detects cheating during any of the commit
protocols.

SIGNING
The signature on a bit b consists of the 20 strings that A would send to open
the commitments G L , ~ , i = 1,. . . ,2a.

VERIFICATION
To verify the signature on a bit b, one verifies that the 2u strings in the signature
open correctly the commitments Cb,i, i = 1,. , . , 2 c .

PROOF OF FORGERY
Given an acceptable signature S on a bit b, A generates her own signature on
b. For i = 1,. . . ,2a, she tries to find an i for which the i’th bit opened in S is
different from the i’th bit opened in her own signature. If such an i is found, she
outputs i and the two strings used to open this commitment. If not, she fails to
generate a proof of forgery.

VALIDATING PROOF OF FORGERY
A triple, (2, s1, s 2) proves that S is a forged signature on b, if s1 is the i’th string
in S (1 _< i 5 2u), s1 # s 2 , and s1 and s2 can be used to open Cb,i to reveal
different bits,

Theorem 3.1 The signature scheme outlined above based o n a statistically hid-
ing bit Commitment scheme with public verification and non-interactive opening
is a secure fail-stop signature scheme.

Proof sketch: We first prove security for the signer. Let Acc denote the event A
accepts the keys. As the event G = Good, we take the event that B cannot guess
any bit committed to with probability better than 5/8. For a single commitment,
by the security property and Markov’s rule, the probability that B’s guess is
better than 518, is at most 8 2-k’ 5 2-2a-1. Therefore we get that

This shows the first part of security for the signer. Next, assume G occurs. Then,
even an infinitely powerful enemy cannot predict in which way A will open any

257

commitment with probability better than 5 /8 . To predict A's signature, one must
guess the contents of 2a commitments, which can be done with probability at
most (5 /8)26 5 2-". Therefore the probability that the algorithm for generating
a proof of forgery fails when given a false signature (i.e., a signature generated
by anyone else than A) is less than 2-". This implies security for the signer.

Note that it does not help B if he first gets a signature from A (e.g., if A signs
the bit 1 and B wants to forge the signature on 0), because the commitments
are chosen independently.

firtherrnore, it is clear that any algorithm that would allow A t o generate
a proof of forgery by herself would also allow her to break the binding property

0 of the commitment scheme. This implies security for the recipient.

Corollary 3.2 If one-way permutations exist, then there exists a secure FSS
scheme.

Proof sketch: In [ll], a statistically (in fact perfectly) hiding bit commitment
scheme is constructed from any one-way permutation. It is easy to check that this
commitment scheme has the properties of public verification and non-interactive
opening. 0

It is clear that the signature scheme we just constructed is a one-time signa-
ture scheme, and therefore not very efficient. If the commitment scheme we use
needs interaction for every new commitment, however, there does not seem to
be a way around this.

However, with a (perhaps) stronger assumption we can do much better,
namely the assumption that collision-intractable (collision-free) hash functions
exist.

Assume we have a family, H , of collision-intractable hash functions, such that
functions in the family map (k + 20. + 1)-bit inputs to k-bit outputs. Functions
in the family can be computed easily and can be efficiently selected at random,
but the probability that a poly-time bounded enemy can find collisions for a
member of H is superpolynomially small in k.

Note that we can build such a family with the right input length from any
collision-intractable family by fixing some input bits if the input length is too
large, and using the iterative construction of [4] if inputs are too short. Now, we
have the following observation:

Lemma 3.3 Let h be any function from k + 2u + 1 bits to k bits. Then, when
x is uniformly chosen, the probability that the preimage of h(x) has size at least
2" is at least 1 - 2-"-l.

Proof: Let the degree of a point in the image of h be the size of its preimage
under h, Since h maps into the set of k-bit strings, at most 2k m 2 " elements can
be preimages of elements of degree 5 2". Hence a uniformly chosen x is such a

0 preimage with probability at most 2k+u/2k+2a+1.

258

We can use this result to build a simple FSS scheme along the lines of the
one described in detail above: To generate keys, B chooses a hash function h
from the family, sends it to A, and A chooses two preimages (her secret key)
2 0 , q and sends the public key h(zo), h(z1) to B . The signature on bit b will be
XI,. A proof of forgery for a signature on bit b will be two different preimages of
h (Z b) .

This scheme is secure for the recipient by the collision-intractability of H,
and secure for the signer by Lemma 3.3: the event Good is that both parts of
the public key have preimages of size at least 2". (If more than one bit is signed,
the probabilities that one of the preimages is too small accumulate, but this
can be countered by letting the size of the inputs to the hash function grow
logarithmically with the number of such public keys used.)

This is still just a one-time signature scheme. But since we have a collision-
intractable hash function, we can use 2k pairs from the public key to authenticate
the hashed image of any number of new pairs, and thus make an arbitrary number
of signatures in a tree-like structure, in the style of Merkle's signature schemes
[8,9]. We can get the public key even shorter by hashing the original pairs down
to k bits. Similarly, messages of arbitrary length can be also signed using only k
pairs by hashing them first.

False signatures can then also be generated by finding new messages colliding
under h with already signed ones. But this is not a problem for generating
proofs of forgery: the signer can show the collision as a proof (which by collision-
intractability she could not generate herself).

Note that, since the function h can be the same for all signers, it makes sense
not to count the description of h it9 a part of the public key. Thus we have shown:

Theorem 3.4 If collision-intractable hush functions exist, there ezists a secure
fail-stop signature scheme where an arbitrary number of messages can be signed,
and the length of the public key is just the security parameter k .

Since extremely efficient hash functions exist in practical applications (MD4,
SHA, etc..), this shows that really practical FSS schemes can be constructed
based on conventional cryptography only.

4 Efficient Statistically Hiding Commitments

Naor and Yung [lo] have shown that a statistically hiding bit commitment
scheme can be built from collision-intractable hash functions. This scheme needs
interaction only in an initialization phase, after which both committing and
opening are non-interactive.

We now sketch how to modify the Naor-Yung scheme to get more efficient
commitments, where several bits can be committed to at once. The amortized
number of bits of communication per bit committed to is only O(1). Our scheme
makes use of families of universal hash functions [3]. These functions are inter-
esting because they emulate some properties of random functions, although they

259

have much shorter descriptions, and can therefore be efficiently used in proto-
cols. The standard example of a family of universal hash functions from n-bit
strings to i 5 n-bit strings are the functions that map x t o ax + bli , where li
means that we take only the most significant i bits, and where a, b E GF(2").
Thus each member of the family is characterized by a choice of a, b. This fam-
ily is 2-universa17 which means that for any 2 fixed inputs z1,x2, the images
f(q), f(x2) are uniformly and independently distributed i-bit strings, when f
is uniformly chosen from the family.

Let t denote the number of bits to be committed to and k the security
parameter of the scheme, and let H be a family of collision-intractable hash
functions constructed such that the input length is 2k + t whenever the output
length is k. Consider the following commitment scheme:

INITIALIZATION PHASE
B chooses at random a function h E H with output length k bits. He sends h to
A.

COMMIT PROTOCOL
A chooses at random a (2k + t)-bit string x, and a 2-universal hash function f
from 2k +t bits to t bits. Let 6 = b l , . . . , bt be the t-bit string A wants to commit
to. She then sends f, h(x) and the bitwise XOR C = 6 @ f(x) to B.

REVEAL PROTOCOL

1. A sends 6 and x to B.
2. B checks that h maps 2 to h(s), and compares C to & @ f(z). If OK, he

accepts the opening, otherwise he rejects.

A formal proof of security for this commitment scheme would require a gen-
eralization of the definition in Section 2.2 to commitments to many bits. We
have omitted this for simplicity, and therefore only sketch the proof below.

Theorem 4.1 The scheme described above is a statistically hiding commitment
scheme, under the assumption that H is a family of collision-intractable hash
functions. It allows commitment to t bits b y a Commitment of size 5k + 3t bits.

Proof sketch: The size of commitments is clear from the description above.
The binding property is trivial from the collision-intractability of H. For the

security property, the privacy amplification theorem of [l] (see also [2]) says that,
over the choice of x and f, B's expected information about f (z) (and therefore
about 6) given by knowledge of f , h, and h(x) is at most 2-'/1n2,

5 Bit Commitments from Fail-Stop Signatures

The main idea in our construction of bit commitments from FSS schemes is to
use the key generation protocol between user A and key center B as the commit

260

protocol, and to think of the resulting public key as the commitment and the
secret key as the string that can open the commitment.

If the FSS scheme has the almost unique secret key property, it is obvious
that A is committed to any value that can be computed from ~ (s k) , where sk is
the secret key. There are two major difficulties, however: First, the distribution
of the secret key held by A given the public key is not necessarily uniform. So
we need a way to assign a value to the secret key known by A in such a way that
B has essentially no information about it, given the public key. This is done by
using universal hash functions [3] and the extended privacy amplification result
of 111. Secondly, the definition of FSS schemes somewhat counterintuitively allows
the key generation to lead to a secret key that can be guessed by a dishonest key
center. This may happen for keys with the strange property that the signer can
prove that (her own) signatures made with this secret key are forgeries. Such
keys are not necessarily unlikely if the key center is dishonest. Hence we must
provide a way for the signer (now the committer) t o exclude these keys.

We now give a more detailed description of the construction:

COMMIT PROTOCOL

1. A and B execute the key generation protocol of the FSS scheme with security
parameters (k , o) , where r = 4k + 4, and k equals the security parameter
for the bit commitment scheme we are building. Here B plays the role of
the key center. If A or B reject in the key generation, the commit protocol
stops. Otherwise let sk be the resulting secret key and pk the public key.

2. A signs the message, “0” (consisting of one 0-bit) using sk. She runs the
algorithm for generating proofs of forgery on the resulting signature. If this
results in a proof of forgery, she stops. Otherwise she continues.

3. A chooses and sends to B a random 2-universal hash function h with a 1-bit
image.

4. Let b be the bit A wants to commit to. Then A sends c = h (~ (s k)) @ b to B.

OPENING

1. A sends b and sk to B.
2. B verifies the secret key, by checking that Fits(sE,pk) = 1. He then compares

b with ce h(lc(sk)). If they are equal, he outputs accept b, if not, he outputs
r e j e c t .

Theorem 5.1 If the above construction is baaed o n a secure FSS scheme with
the almost unique secret key property, the Tesutt is a statistically hiding bat com-
m i t m e n t scheme (with non-interactive opening and public verification).

Proof: First note that the possibility of stopping in Step 2 does not prevent an
honest A and B from completing the protocol: security for the recipient implies
that the scheme almost never stops in Step 2 if A and B are honest.

The binding property is clear from the almost unique secret key property of
the FSS scheme: if the committer could open the commitment in two different

261

ways, she would know two secret keys satisfying the predicate Fits and with
different n-images.

For the security property, we need the following notation: Let Acc be the
event that A accepts the key generation, i.e., does not stop in Step 1, and let U
be the event that A does not stop in Step 1 or 2. Finally let G be the event that
the public key produced, p k , and v iewg are in the set Goud, as defined before
Definition 2.2.

The extended privacy amplification theorem from [l] deals with collision en-
tropies, instead of Shannon entropies. The collision entropy, or Renyi entropy, of
a distribution is defined as minus the logarithm base 2 of the sum of the squared
probabilities. For a binary distribution, like that of h(n(sk)), with probabilities
p and 1 - p , the collision entropy is

W P) = - %(P2 + (1 - P)".

This is a value between 0 and 1, like the Shannon entropy. I t is therefore natural
t o define the collision information to be 1 - R.

Let 12 denote the collision information obtained by 8 about h(n(sk)) during
the commit protocol, and let EB be its expected value, taken over the random
choices of A. For an event X, E i (X) denotes the expected information given
that X occurs. Then we have

Eh = P~ob[7U]Ei , (7U) + Prob[U, G]Ei,(U, G) + Prob[U, 7G]Eh(U, 1G)
5 0 + Prob[U, G]Eh(U, G) + P T O ~ [A C C , ' G]
5 Prob[U, G]Eh(U, G) + 2 - 0

by the security for the signer, and since A does not reveal anything at all if the
commit protocol is aborted in Step 1 or 2.

The rest of the proof proceeds in 3 parts: We first show that in most cases,
the best guess at the significant part of the secret key from the point of view of 8
still has a rather small probability of being correct. Secondly, we derive with the
extended privacy amplification theorem that in most cases, an enemy has very
little collision information about h(n(sk)) . Finally, we derive an upper bound on
the advantage an enemy has in guessing the content of the commitment.

Part 1 Let SK be the random variable denoting the secret key of A, and
let skmaz denote a secret key such that tc(skrnar) has maximal probability given
v := (p k , v i e w g) , U and G. We now show that on average over the possible v's
and given U and G, this maximal probability is upper bounded:

Prob[&(SK) = ~ (s k , , ,) I U, G] 5 2-"P~ob[U, GI-'. (*)

For this, it is sufficient to show that

PTU~[K(SK) = ~ (s k ~ ~ ~) , U, G] 5 2-".

To do this, we consider the following attack by B* on the FSS scheme.

262

1. 3' executes the key generation protocol with A in the same way as B did.
2. B' finds skmoz and uses it to make a signature on the message "0".

Let F denote the event that A fails to prove this forgery. Note that the distri-
bution of the keys after Step 1 of this attack and of the commit protocol are
equal. Furthermore, U c Acc, and whenever Acc and K (S K) = &(skmaz) occur,
U implies F by definition of the almost unique secret key property. This gives
us

Prob[n(SK) = fi(skm,,), U, GI = P T O ~ [K (S K) = s(skmaZ), U, G, ACC]
5 Prob[F, n (SK) = IC(SIC~~~) ,G ,ACC]
= Prob[F, ACC, K (S K) = K (s ~ , , Z) I G]Prob[G]
5 Prob[F I GI
5 2 - p .

The final inequality follows from the security for the signer of the FSS scheme.
This finishes the proof of (*).

Now let V be a random variable denoting v = (pk,viewb) and M the set
of cues where the probability of the best guess is much larger than on average,
and also the event that such a case occurs:

M := {V I Prob[rt(SK) = &(SIC,,,) I G, U, V = V] >_ Prob[U, G]-'2-"/2}.

By Markov's rule, the average inequality (*)'implies that

ProbIM I U, GI 5 2-"/2.

We split the expected information according to whether A4 occurs or not.

Part 2 Whenever v $ M, the extended privacy amplification lemma, Lemma
5.2 below, immediately implies that the information Eg(U, G, V = v) is small:

Eg(U, G , V = V) 5 Prob[U, G]-l2-"/'- < Prob[U, G]-'22-"'2.

Substituting this into the two equations above where Eg was partitioned gives

Ejj(U, G) < 2-''z + C Prob[V = ZJ 1 U, G] P T o ~ [U , G] - ~ ~ ' - ~ / '

2
In 2

V t Z M

< - 2-"/' + Prob[U, G]-122-"/2

and thus
Eg 5 Prob[U, G]2-Ol2 + 22-u/2 + 2-" < 23-4/2.

263

Part 3 Let Bias be the random variable denoting B's advantage p in guess-
ing h(n(sk)). (This also bounds the advantage in guessing b .) From the definition
of the collision entropy for binary distributions one sees

1 R(1/2 + /3) = - log, (i + 2P2) = 1 - log2 (1 + 4/37 5 1 - 402

for 1/31 <_ i, i.e., 4p2 5 1. This implies

D l ,J l-R(1/2+@). 1

Thus we have shown the following pointwise inequality between the random
variables Bias and the collision information I 2 :

1
2

Bias 5 -a.
Applying the general formula E(X) 5 d m to X = yields

1
E(Bias) 5 Z E (f i) 5 i\lEilB) = :& < P - 5 .

In the last inequality, the result of Part 2 was used.

that the commitment scheme has the security property.
As the security parameter of the FSS scheme, CT, equals 4k + 4, this shows

Remark: From the proof of the security property, it is clear that we do not need
to hash all the way down to a 1-bit value to wipe out the enemy's information.
Therefore we can commit t o more than one bit in one commitment.

Lemma 5.2 Let S be a random variable with a given distribution { p i 1 i =
1,2,. . .) 2") on the set of n-bit strings. If there is an a > 0 such that pi 5 a
for each i, and a random 2-universal hash function mapping n bits to 1 bit is
chosen, then the expected collision information about the image h(S) is at most

2 a-. In 2

Proof: Let N = 2". Then
N N

i = l i= l

Hence the collision entropy R of the given distribution is

R 2 - logz(a).

Theorem 5 of [l] shows that if an unbounded enemy knows at most I bits of
collision information about an n-bit string (defined as n - R), and if the string is
hashed down to n - 1 - s bits, the enemy's expected collision information about
the result is at most 2-8/ ln(2) bits. In our case, we hash down to 1 bit, and thus
s = R - 1 2 - log2(a) - 1. Hence, the eneniy's expected collision information E
about h(S) is n

264

6 Equivalence

The FSS scheme constructed from bit commitments in Section 3 does not neces-
sarily have a unique secret key property: for example, more than one bit string
may be acceptable as opening a commitment as a 1. In the following, we modify
the scheme so that it has at least the almost unique secret key property. To-
gether with Theorem 5.1, this yields the equivalence between FSS schemes with
the almost unique secret key property and statistically hiding bit commitment
schemes with non-interactive opening and public verification. The only changes
to the protocol are:

- In key generation, A makes an additional commitment to every bit in the
strings that will open the commitments cb,;. These secondary commitments
belong to the public key, and the strings that open them belong to the secret
key.

- The security parameter CT is increased a little (since the secondary commit-
ments may give a small amount of extra information).

It is clear that this scheme is still secure. For the almost unique secret key
property, Fits (sk ,pk) is defined to mean that the strings in sk open all the
commitments of p k correctly, and the significant part, & (S I C) , of sk , consists of
those strings that open the original commitments. Clearly, finding two secret keys
fitting the same public key, but with different n-images, would mean opening at
least one secondary commitment in both ways. Moreover, two secret keys ski, skz
with ~ (s k l) = ~ (s k z) obviously lead to the same signatures.

7 Conclusion

We have shown that the existence of FSS schemes with the almost unique secret
key property is equivalent to the existence of bit commitment schemes with non-
interactive opening. In addition, we have shown how to construct efficient FSS
schemes from any collision-intractable hash function.

Acknowledgement

It is a pleasure to thank Moti Yung for interesting discussions about all sorts
of statistically hiding schemes, and in particular, one that lead to one of the
independent discoveries of the construction of fail-stop signature schemes from
bit commitments. We also thank Michael Waidner for letting us extend a joint
result that has never really been published.

References

1. C. H. Bennett, G. Brassard, C. Crhpeau, U. Maurer: Privacy Amplification Against
Probabilistic Information. In preparation.

265

2. C. H. Bennett, G. Brassard, J.-M. Robert: Privacy Amplification by Public Dis-

3. J. L. Carter, M. N. Wegman: Universal Classes of Hash Functions. Journal of

4. I. 33. Damgkd A Design Principle for Hash Functions. Proceedings of Crypto’89,

5. E. van Heyst, T. P. Pedersen: Bow to Make Ef ic ient Fail-Stop Signatures. Pre-

6. E. van Heyst, T. P. Pedersen, B. Pfitzmann: New Constructions of Fail-Stop Sig-

7. R.Rivest: The MD4 message-digest algorithm, Proc. of Crypto 90.
8. R. C. Merkle: Protocols for Pnblic Key Cryptosystems. In: Secure Communications

and Asymmetric Cryptosystems, AAAS Selected Symposium 69, G. J. Simmons
(ed.); Westview Press, Boulder 1982, pp. 73-104.

9. R. C. Merkle: A digital signature based on a conventional encryption function.
Proceedings of Crypto’87, LNCS 293, Springer-Verlag, Berlin 1988, pp. 369-378.

10. M. Naor, M. Yung: Universal One- W a y Hash Functions and their Cryptographic
Applications. Proceedings of 2lU* STOC, pp. 3343,1989.

11. M. Naor, R. Ostrovsky, R. Venkatesan, M. Yung: Perfect Zero-Knowledge Argu-
ments for N P Can B e Based on General Complexity Assumptions. Presented at
Crypto’92, Santa Barbara, 1992.

cussion. SIAM Journal on Computing, vol 17, no. 2, 1988, pp. 210-229.

Computer and System Sciences 18, 1979, pp. 143-154.

LNCS 435, pp. 416427,1990.

sented at Eurocrypt’92, Balatonfiired, Hungary, 1992.

n a t u r e ~ and Lower Bounds. Presented at Crypto’92, Santa Barbara, 1992.

12. T. P. Pedersen, B. Pfitzmann: Fail-Stop Signatures. Manuscript, February 1993.
13. B. Pfitzmann, M. Waidner: Formal Aspects of Fail-Stop Signatwes. Internal report

22/90, FakultZt fiir Informatik, Universitat Karlsruhe.
14. B. Pfitzmann, M. Waidner: Fail-Stop Signatures and their Application. Securicom

91, Paris, pp. 145 - 160.
15. Specifications f o r a Secure Bash Standard, Federal Information Processing Stan-

dards Publication YY, 1992.
16. M. Waidner, B. Pfitzmann: The Dining cryptographers in the Disco: Unconditional

Sender and Recipient Untraceability with Computationally Secure Serviceability.
Proceedings of Eiirocrypt’89, LNCS 434, page 690, 1990.

	On the Existence of Statistically Hiding BitCommitment Schemes and Fail-Stop Signatures
	1 Introduction
	2 Definitions and Notation
	2.1 Fail-Stop Signatures
	2.2 Bit Commitments

	3FunctionsFail-Stop Signatures from Bit Commitments and Hash
	4 Efficient Statistically Hiding Commitments
	5 Bit Commitments from Fail-Stop Signatures
	6 Equivalence
	7 Conclusion
	Acknowledgement
	References

