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Abstract. We show that the existence of a statistically hiding bit com- 
mitment scheme with non-interactive opening and public verification 
implies the existence of fail-stop signatures. Therefore such signatures 
can now be based on any one-way permutation - the weakest assump- 
tion known to be sufficient for fail-stop signatures. We also show that 
genuinely practical fail-stop signatures follow from the existence of any 
collision-intractable hash function. A similar idea is used to improve a 
commitment scheme of Naor and Yung, so that one can commit to sev- 
eral bits with amortized 0(1) bits of communication per bit committed 
to. 
Conversely, we show that any fail-stop signature scheme with a property 
w e  call the almost unique secret key property can be transformed into a 
statistically hiding bit commitment scheme. All previously known fail- 
stop signature schemes have this property. We even obtain an equivalence 
since we can modify the construction of fail-stop signatures from bit 
commitments such that it has this property. 

1 Introduction 

In this section, we introduce the two main actors on the scene, fail-stop signatures 
(FSS) and statistically hiding bit commitments. 

Fail-stop signatures were introduced in [16]. Further constructions appear in 
[13, 14, 5, 61. A formal definition of the concept and a survey of the recent most 
efficient schemes will appear in [12]. 

Before going into the properties of FSS schemes, let us discuss some aspects 
of ordinary digital signatures: In an application of such signatures, what should 
happen if someone shows up with a message and a valid looking signature from 
user A, but  A claims that she never signed the message? Suppose the signature 
scheme is based on a computational problem, P, which everybody accepts can- 
not be solved in polynomial time. Based on this one could claim that it is not 
reasonable to  assume that the system was broken by an enemy. So either A is 
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lying, or she must have stored her secret key insecurely, and should therefore be 
held responsible in either case. 

However, this argument sweeps under the rug a very important point: we 
always have to choose particular instances of the problem for each user, and the 
discussion should actually refer to how hard this particular instance is to break. 
If we are using RSA, for example, we have to decide on a size of moduli to  use. 
Even if we believe that factoring is not in polynomial time, this does not answer 
questions like: “are 512-bit moduli secure enough?”. This is a question about 
the state of the art of practical factoring, and does not have much to do with its 
complexity theoretic status. 

In a practical situation, it is often the case that individual users have only 
very limited computing power available. This of course limits the sizc of problem 
instance they can use, but not the amount of computing power that might be 
used to break those instances. In such a situation, depending on the practical 
circumstances, the possibility that A is not lying and someone broke her key, is 
perhaps not so unreasonable after all. 

This raises a natural question: is it possible at all to  distinguish between on 
one hand the case where A is lying or has leaked the secret key, and on the other 
hand the case where someone with a large (unexpected) amount of computing 
power has broken the system? 

This is precisely what FSS schemes enable us to do. The crucial property 
that distinguishes FSS from ordinary digital signatures is that there are sev- 
eral possible secret keys corresponding to a given. public key. Even an infinitely 
powerful enemy cannot guess from publicly available information which of the 
possible secret keys is known t o  the signer. 

Since usage of different secret keys in general leads to different signatures, it 
is impossible for the enemy to  predict which signature the signer would producc 
on a given message, if it has not already been signed. 

Furthermore, from two different signatures on the same message, A can pro- 
duce what is known as a proof of forgery. But if she has only the signature 
available that she would produce herself, it is not feasible for her to  produce 
such a proof. 

Thus if a powerful enemy tries t o  frame A and submits a message seemingly 
signed by A, with overwhelming probability the signature will not be the one 
A would produce herself, and A can therefore respond with a proof of forgery. 
On the other hand, A cannot falsely repudiate her own signature, if it has in 
fact not been forged, unless she herself breaks the computational assumption. 
(Thus even in this case, the proof of forgery correctly indicates that someone 
with unexpectedly large computing power has broken the scheme.) 

In this paper, we show that there is an intimate connection between sta- 
tistically hiding bit commitment schemes and FSS schemes. A bit commitment 
scheme is a protocol that party A can conduct with B to commit herself to a 
bit b without revealing to B (or anyone else) the value of b. At a later time, 
A can open the commitment and convince B about the value that wzls chosen 
originally, i.e., it is not feasible for A to open a commitment to  reveal both b = 0 
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and b = 1. A commitment scheme is said to be statistically hiding if B gets only 
negligible Shannon-information about b prior to the opening of the commitment. 
Such bit commitment schemes are extremely important because their existence 
implies perfect or statistical zero-knowledge arguments for any problem in NP. 

Concretely, we show how to construct FSS schemes from any statistically 
hiding bit commitment scheme with non-interactive opening and public verifica- 
tion (see below for details). This result is also contained more or less implicitly 
in [13]. Also the result was discussed informally, prior to the work on this pa- 
per, by Moti Yung and Birgit Pfitzmann. Our contribution in this respect is to 
somewhat simplify the construction and to  identify the properties needed from 
the bit commitment scheme. 

By the work of Naor et al. ([ll]), this means that FSS schemes can be based 
on any one-way permutation. Before, FSS schemes were only known to follow 
from the existence of claw-free permutations. 

We also show that any collision-intractable hash function can be used to 
build a secure FSS scheme. If the hash function is efficient, like MD4 [7] or SHA 
[15], say, then the resulting FSS scheme is practical. 

Conversely, we show that any FSS scheme with a property we call the almost 
unique secret key property,  can be transformed into a statistically hiding bit 
commitment scheme. This property means that it is infeasible for a signer to 
compute more than one significantly different secret key corresponding to her 
public key; see below for details. All previously known FSS schemes have this 
property. Finally, we show that the existence of FSS schemes with this property 
is in fact equivalent to the existence of statistically hiding bit commitments with 
non-interactive opening and public verification. 

2 Definitions and Notation 

2.1 Fail-Stop Signatures 

For the results in this paper, it is sufficient to  consider fail-stop signature schemes 
that allow just one message to be signed. Based on [12] (see also [13]), the 
definition of such schemes is now sketched. 

A fail-stop signature scheme consists of five parts: a protocol for generating 
the keys, a method for signing, a predicate for verifying signatures (a signature 
satisfying this predicate is called acceptable), a method for constructing proofs 
of forgery and a predicate for verifying proofs of forgery (a proof satisfying this 
predicate is called valid). The methods for producing signatures and proofs of 
forgery take the secret key as input, and the public key is input to the compu- 
tation of the two predicates. 

Unlike usual digital signatures, the key generation is a two-party protocol, 
which is executed by the signer A and a center B trusted by the recipients. 
This is necessary to  ensure that the signer does not generate a pair of keys for 
which she can prove her own signatures to be forgeries. A or B may reject in 
key generation, but if both parties are honest, this should only happen with 
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negligible probability. We remark that one can always do without a key center 
(at the expense of efficiency), by letting every recipient play the role of B .  

Obviously, these parts must satisfy that if the keys are generated correctly, 
then correct signatures and correct proofs of forgery are accepted by the cor- 
responding verification methods. The more interesting parts of the definition 
are 

- Security for the recipient: It is infeasible for a polynomially bounded signer 
to  produce an acceptable signature and a valid proof that it is forged. 

- Security for the signer: It is impossible for a forger with unlimited computing 
power to produce a signature that the signer cannot prove to  be a forgery. 

A fail-stop signature scheme usually has two security parameters: k for the se- 
curity of the recipient and u for the security of the signer. 

To define the security of the recipient in more detail, we consider the following 
scenario involving the key center, B ,  and a possibly cheating signer, A: First A 
and B generate a pair of keys, and then A outputs a triple (m, s,pr). 

Definition 2.1 A fail-stop signature scheme is secure for the recipient with re- 
spect to the security parameter k if for all c > 0 and for all polynomially bounded 
signers, A, the following holh for suficiently large k: The probability that s is 
an acceptable signature on m and pr is a valid proof of forgery is at most k-'. 
This probability is over the random coins of B and A. 

In order to  define the security of the signer, we consider a cheating center, B ,  
possibly with unlimited computing power. As the signer must be secure even if 
the center cooperates with future recipients, it is sufficient that the center itself 
cannot construct forgeries that A cannot disavow. Consider the scenario where 
first A and 3 execute the key generation protocol. This results in a secret key, 
sk, and a public key, pk. B's view of this protocol is denoted by viewg (random 
bits and all messages). Then B outputs a pair (mo, SO), where SO should be an 
acceptable signature on mo. 

Let SK be the set of possible secret keys given viewg. SK is equipped with 
a probability distribution induced by the random coins used by A during the 
key generation. Then Good is defined as the set of pairs (pk,viewg) such that 
for all mo, so and with probability at least 1 - 2-" over the choices of possible 
secret keys sk in SK, A can prove that SO is a forgery using sk as the secret key. 

Definition 2.2 A fail-stop signature scheme is secure for the signer with re- 
spect t o  the security parameter u, if the probability that A accepts the keys and 
(pk,viewg) $ Good is  at most 2-O. (The probability i s  over A's coins). 

Intuitively, this means that only with very small probability ( 5  2-O) can B 
make A accept a pair of keys for which she has probability less than 1 - 2-" of 
proving forgeries. 

A complete definition also has to take into account chosen message attacks. 
However, our construction of commitments from FSS does not need security 
against such attacks, and for the FSS schemes we construct, it is easy to  see 
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that such attacks make no difference. Hence, we stick to  this somewhat simpler 
definition. 

Intuitively, these definitions imply that a cheating signer cannot compute just 
any secret key that  is possible given the public key. If she could, she could prove 
her own signatures to  be forgeries by signing using one secret key and using a 
different key in the proof. All fail-stop signature schemes in previous literature 
have an idealized version of this property: No matter how the (polynomially 
bounded) signer executes the key generation, she cannot compute two different 
secret keys that are both possible given the public key. We call this the unique 
secret k e y  property.  In the following, we use a relaxed version of it, the almost  
un ique  secret k e y  property: Although the signer might be able to  find more than 
one secret key fitting a public key, she cannot not find significantly diflerent ones.  
Keys are “not significantly different” if they lead to equal signatures. This can 
be formalized by introducing a polynomial-time computable mapping K on the 
secret keys with the intuitive meaning that ~ ( s k )  is the part of sk that makes a 
difference in the signatures. 

Definition 2.3 A fail-stop signature s c h e m e  has  the  almost  un ique  secret k e y  
proper t y  af there are a polynomial- t ime computable predicate Fits and a polyno- 
m i a l  tame computable mapping K wi th  t h e  fol lowing properties: 

- If the  s igner follows the k e y  generat ion protocol, the resulting secret and  
publ ic  key ,  sk and p k ,  always fig1 Fi ts (sk ,pk)  = 1. 

- No probabilistic poly- t ime bounded s igner  can execute the  k e y  generat ion pro-  
tocol w i t h  the hones t  k e y  center  and  compute skl,skZ such  that  ~ ( s k l )  # 
~ ( s k z )  and Fits(sk1,pk) = Fits(sk2,pk) = 1 with more t h a n  superpolyno- 
m i a l l y  s m a l l  probability. 

- If sAl and skz sat is fy  F z t s ( s k 1 , p k )  = F i t s ( s k 2 , p k )  = 1 and ~ ( s k ~ )  = 
n(skZ), t h e n  f o r  a n y  message,  the signature produced w i th  slc1 equals t he  
o n e  produced with s k z .  

For a concrete FSS scheme, there will typically exist a function that computes 
the public key from a secret key. Then Fits can be constructedfrom this function. 
Furthermore, note that if K is the identity, the third property is no restriction, 
and one just obtains the unique secret key property. 

All known schemes (see [13, 14, 5 ,  61) have the almost unique secret key 
property, although one can easily construct artificial schemes without it. 

2.2 Bit Commitments 

We define a bit commitment scheme as a pair of two-party protocols, namely 
the commit and the reveal protocol. They take place between parties A and B,  
where A is the party committing herself. The participants are modeled in the 
standard way as interactive probabilistic Turing machines. As before, the view 
of a participant is the bit string consisting of his own coinflips concatenated by 
all nessages sent in the protocol. X will denote any machine playing the role of 
X in the protocol. 
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For the commit protocol, A gets as input a bit b. We assume that  B knows 
some a priori information about b, such that b = 0 with probability 6, where 
S may be different from 1/2. In addition both parties have access to  a security 
parameter k. The concatenation of all messages sent in the commit protocol 
is called the commitment. In some concrete schemes, it makes sense to  define 
the commitment its a subset or a fuiictiou of the messages. We have chosen our 
definition of a commitment for simplicity. A or B may reject in the commit 
protocol, but if both parties are honest, this should only happen with negligible 
probability. 

For the reveal protocol, A gets as input her view of the commit protocol, 
while B gets the commitment as input. At the end of the reveal protocol, B 
outputs r e j e c t ,  accept 0 or accept 1. The intuitive meaning is that either B has 
detected cheating by A, or he accepts that A has opened the commitment to  
reveal either 0 or 1. 

We will only consider commitment schemes with non-interactive opening, 
i.e., where the reveal protocol consists of A sending one message to  B. 

A statistically hiding bit commitment scheme must satisfy two properties: 

- Security Property: For any B ,  let bias denote 3 ’ s  advantage in guessing b 
given fi’s view 21 of the commit protocol, ie., bias = (6 - Pro@ = 0 1 .]I. 
Then the expected value of bias is at most 2 - k .  The probabilities are taken 
over the coinflips of A. 

- Binding Property: Let A be any polynomially bounded machine that executes 
the commit protocol with B ,  and then outputs two strings S O , S ~ .  

Let p ( & k )  be the probability that B outputs accept b on input S b  in the 
reveal protocol, for both b = 0 and b = 1. The probability is taken over the 
coinflips of B and A. Then p ( A ,  k) is superpolynomially small as a function 
of k. 

We require an exponential decrease of the bias in the security property. However, 
this is not a significant restriction, since: standard ”XOR-ing” techniques can be 
used to  improve weaker schemes such that  they satisfy the definition. Moreover, 
most practical examples known in fact have a bias of 0. 

Note that  we have built into the model two properties that the bit commit- 
ment scheme must satisfy in order for the result in the next section to  work: 
first non-interactive opening must be possible, as mentioned; secondly B must 
be able to  verify the opening based on the commitment only. This means that  
anyone who trusts that a given commitment is the result of a conversation with 
B can verify the opening without knowing B’s coinflips. Hence the term public 
verification. This property is necessary in the construction of a FSS scheme to 
ensure that  everybody can verify signatures. 

3 
Functions 

Fail-Stop Signatures from Bit Commitments and Hash 

In this section, we assume that we are given a statistically hiding bit commitment 
scheme as defined above, and will use this to  build an FSS scheme. The basic 
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idea is very similar to  Lamport and Diffie’s one-time signatures. 
We will only show how to sign a 1-bit message -this easily generalizes to  any 

number of bits. Recall that an FSS scheme uses two security parameters, k and u. 

KEY GENERATION 
In this phase, the key center B and user A execute 40. instances of the com- 
mit protocol, which is executed with security parameter k’ such that k‘ 2 Ic 
and k‘ 2 20 + 4. For each instance, A chooses randomly and uniformly the 
bit to  commit to. The resulting commitments are organized in 20 pairs called 
(Co,;,Cl,;), i = 1,. . . , 20 .  The public key is the set of commitments, while the 
secret key is the set of (4u) strings known by A that will open the commitments. 
A stops and rejects the keys, if she detects cheating during any of the commit 
protocols. 

SIGNING 
The signature on a bit b consists of the 20 strings that A would send to open 
the commitments G L , ~ ,  i = 1,. . . ,2a. 

VERIFICATION 
To verify the signature on a bit b, one verifies that the 2u strings in the signature 
open correctly the commitments Cb,i, i = 1,. , . , 2 c .  

PROOF OF FORGERY 
Given an acceptable signature S on a bit b, A generates her own signature on 
b. For i = 1,. . . ,2a, she tries to  find an i for which the i’th bit opened in S is 
different from the i’th bit opened in her own signature. If such an i is found, she 
outputs i and the two strings used to open this commitment. If not, she fails to  
generate a proof of forgery. 

VALIDATING PROOF OF FORGERY 
A triple, (2, s1, s 2 )  proves that S is a forged signature on b,  if s1 is the i’th string 
in S (1 _< i 5 2u), s1 # s 2 ,  and s1 and s2 can be used to  open Cb,i to  reveal 
different bits, 

Theorem 3.1 The signature scheme outlined above based o n  a statistically hid- 
ing bit Commitment scheme with public verification and non-interactive opening 
is a secure fail-stop signature scheme. 

Proof sketch: We first prove security for the signer. Let Acc denote the event A 
accepts the keys. As the event G = Good, we take the event that  B cannot guess 
any bit committed to  with probability better than 5/8. For a single commitment, 
by the security property and Markov’s rule, the probability that B’s guess is 
better than 518, is at most 8 2-k’ 5 2-2a-1. Therefore we get that 

This shows the first part of security for the signer. Next, assume G occurs. Then, 
even an infinitely powerful enemy cannot predict in which way A will open any 
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commitment with probability better than 5 /8 .  To predict A's signature, one must 
guess the contents of 2a commitments, which can be done with probability at 
most (5 /8 )26  5 2-". Therefore the probability that the algorithm for generating 
a proof of forgery fails when given a false signature (i.e., a signature generated 
by anyone else than A )  is less than 2-". This implies security for the signer. 

Note that it does not help B if he first gets a signature from A (e.g., if A signs 
the bit 1 and B wants to forge the signature on 0), because the commitments 
are chosen independently. 

firtherrnore, it is clear that any algorithm that would allow A t o  generate 
a proof of forgery by herself would also allow her to break the binding property 

0 of the commitment scheme. This implies security for the recipient. 

Corollary 3.2 If one-way permutations exist, then there exists a secure FSS 
scheme. 

Proof sketch: In [ll], a statistically (in fact perfectly) hiding bit commitment 
scheme is constructed from any one-way permutation. It is easy to check that this 
commitment scheme has the properties of public verification and non-interactive 
opening. 0 

It is clear that the signature scheme we just constructed is a one-time signa- 
ture scheme, and therefore not very efficient. If the commitment scheme we use 
needs interaction for every new commitment, however, there does not seem to 
be a way around this. 

However, with a (perhaps) stronger assumption we can do much better, 
namely the assumption that collision-intractable (collision-free) hash functions 
exist. 

Assume we have a family, H ,  of collision-intractable hash functions, such that 
functions in the family map (k + 20. + 1)-bit inputs to k-bit outputs. Functions 
in the family can be computed easily and can be efficiently selected at random, 
but the probability that a poly-time bounded enemy can find collisions for a 
member of H is superpolynomially small in k. 

Note that we can build such a family with the right input length from any 
collision-intractable family by fixing some input bits if the input length is too 
large, and using the iterative construction of [4] if inputs are too short. Now, we 
have the following observation: 

Lemma 3.3 Let h be any function from k + 2u + 1 bits to k bits. Then, when 
x is uniformly chosen, the probability that the preimage of h(x) has size at least 
2" is at least 1 - 2-"-l. 

Proof: Let the degree of a point in the image of h be the size of its preimage 
under h, Since h maps into the set of k-bit strings, at most 2k m 2 "  elements can 
be preimages of elements of degree 5 2". Hence a uniformly chosen x is such a 

0 preimage with probability at most 2k+u/2k+2a+1.  
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We can use this result to  build a simple FSS scheme along the lines of the 
one described in detail above: To generate keys, B chooses a hash function h 
from the family, sends it to  A, and A chooses two preimages (her secret key) 
2 0 , q  and sends the public key h(zo), h(z1)  to  B .  The signature on bit b will be 
XI,. A proof of forgery for a signature on bit b will be two different preimages of 
h ( Z b ) .  

This scheme is secure for the recipient by the collision-intractability of H, 
and secure for the signer by Lemma 3.3: the event Good is that  both parts of 
the public key have preimages of size at least 2". (If more than one bit is signed, 
the probabilities that  one of the preimages is too small accumulate, but this 
can be countered by letting the size of the inputs to  the hash function grow 
logarithmically with the number of such public keys used.) 

This is still just a one-time signature scheme. But since we have a collision- 
intractable hash function, we can use 2k pairs from the public key to authenticate 
the hashed image of any number of new pairs, and thus make an arbitrary number 
of signatures in a tree-like structure, in the style of Merkle's signature schemes 
[8,9]. We can get the public key even shorter by hashing the original pairs down 
to k bits. Similarly, messages of arbitrary length can be also signed using only k 
pairs by hashing them first. 

False signatures can then also be generated by finding new messages colliding 
under h with already signed ones. But this is not a problem for generating 
proofs of forgery: the signer can show the collision as a proof (which by collision- 
intractability she could not generate herself). 

Note that, since the function h can be the same for all signers, it makes sense 
not to  count the description of h it9 a part of the public key. Thus we have shown: 

Theorem 3.4 If collision-intractable hush functions exist, there ezists a secure 
fail-stop signature scheme where an arbitrary number of messages can be signed, 
and the length of the public key  is just the security parameter k .  

Since extremely efficient hash functions exist in practical applications (MD4, 
SHA, etc..), this shows that really practical FSS schemes can be constructed 
based on conventional cryptography only. 

4 Efficient Statistically Hiding Commitments 

Naor and Yung [lo] have shown that  a statistically hiding bit commitment 
scheme can be built from collision-intractable hash functions. This scheme needs 
interaction only in an initialization phase, after which both committing and 
opening are non-interactive. 

We now sketch how to  modify the Naor-Yung scheme to get more efficient 
commitments, where several bits can be committed to  at once. The amortized 
number of bits of communication per bit committed to  is only O(1). Our scheme 
makes use of families of universal hash functions [3]. These functions are inter- 
esting because they emulate some properties of random functions, although they 
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have much shorter descriptions, and can therefore be efficiently used in proto- 
cols. The standard example of a family of universal hash functions from n-bit 
strings to  i 5 n-bit strings are the functions that map x t o  ax + bli ,  where li 
means that we take only the most significant i bits, and where a, b E GF(2").  
Thus each member of the family is characterized by a choice of a, b. This fam- 
ily is 2-universa17 which means that for any 2 fixed inputs z1,x2, the images 
f(q), f(x2) are uniformly and independently distributed i-bit strings, when f 
is uniformly chosen from the family. 

Let t denote the number of bits to be committed to  and k the security 
parameter of the scheme, and let H be a family of collision-intractable hash 
functions constructed such that the input length is 2k + t whenever the output 
length is k. Consider the following commitment scheme: 

INITIALIZATION PHASE 
B chooses at random a function h E H with output length k bits. He sends h to  
A. 

COMMIT PROTOCOL 
A chooses at random a (2k + t)-bit string x, and a 2-universal hash function f 
from 2k +t bits to  t bits. Let 6 = b l ,  . . . , bt be the t-bit string A wants to  commit 
to. She then sends f, h(x) and the bitwise XOR C = 6 @ f(x) to B. 

REVEAL PROTOCOL 

1. A sends 6 and x to B.  
2. B checks that h maps 2 to h(s), and compares C to & @ f(z). If OK, he 

accepts the opening, otherwise he rejects. 

A formal proof of security for this commitment scheme would require a gen- 
eralization of the definition in Section 2.2 to commitments to many bits. We 
have omitted this for simplicity, and therefore only sketch the proof below. 

Theorem 4.1 The scheme described above is a statistically hiding commitment 
scheme, under the assumption that H is a family of collision-intractable hash 
functions. It allows commitment to  t bits b y  a Commitment of size 5k + 3t bits. 

Proof sketch: The size of commitments is clear from the description above. 
The binding property is trivial from the collision-intractability of H. For the 

security property, the privacy amplification theorem of [l] (see also [2]) says that, 
over the choice of x and f, B's expected information about f ( z )  (and therefore 
about 6) given by knowledge of f ,  h, and h(x) is at most 2-'/1n2, 

5 Bit Commitments from Fail-Stop Signatures 

The main idea in our construction of bit commitments from FSS schemes is to 
use the key generation protocol between user A and key center B as the commit 
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protocol, and to  think of the resulting public key as the commitment and the 
secret key as the string that can open the commitment. 

If the FSS scheme has the almost unique secret key property, it is obvious 
that A is committed to  any value that can be computed from ~ ( s k ) ,  where sk is 
the secret key. There are two major difficulties, however: First, the distribution 
of the secret key held by A given the public key is not necessarily uniform. So 
we need a way to  assign a value to  the secret key known by A in such a way that 
B has essentially no information about it, given the public key. This is done by 
using universal hash functions [3] and the extended privacy amplification result 
of 111. Secondly, the definition of FSS schemes somewhat counterintuitively allows 
the key generation to  lead to  a secret key that can be guessed by a dishonest key 
center. This may happen for keys with the strange property that the signer can 
prove that (her own) signatures made with this secret key are forgeries. Such 
keys are not necessarily unlikely if the key center is dishonest. Hence we must 
provide a way for the signer (now the committer) t o  exclude these keys. 

We now give a more detailed description of the construction: 

COMMIT PROTOCOL 

1. A and B execute the key generation protocol of the FSS scheme with security 
parameters ( k , o ) ,  where r = 4k + 4, and k equals the security parameter 
for the bit commitment scheme we are building. Here B plays the role of 
the key center. If A or B reject in the key generation, the commit protocol 
stops. Otherwise let sk be the resulting secret key and pk the public key. 

2. A signs the message, “0” (consisting of one 0-bit) using sk. She runs the 
algorithm for generating proofs of forgery on the resulting signature. If this 
results in a proof of forgery, she stops. Otherwise she continues. 

3. A chooses and sends to  B a random 2-universal hash function h with a 1-bit 
image. 

4. Let b be the bit A wants to  commit to. Then A sends c = h ( ~ ( s k ) )  @ b to B. 

OPENING 

1. A sends b and sk to  B. 
2. B verifies the secret key, by checking that Fits(sE,pk)  = 1. He then compares 

b with ce h(lc(sk)). If they are equal, he outputs accept b,  if not, he outputs 
r e j e c t  . 

Theorem 5.1 If the above construction is baaed o n  a secure FSS scheme with 
the  almost unique secret key property, the Tesutt is a statistically hiding bat com- 
m i t m e n t  scheme (with non-interactive opening and public verification). 

Proof: First note that the possibility of stopping in Step 2 does not prevent an 
honest A and B from completing the protocol: security for the recipient implies 
that the scheme almost never stops in Step 2 if A and B are honest. 

The binding property is clear from the almost unique secret key property of 
the FSS scheme: if the committer could open the commitment in two different 
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ways, she would know two secret keys satisfying the predicate Fits  and with 
different n-images. 

For the security property, we need the following notation: Let Acc be the 
event that A accepts the key generation, i.e., does not stop in Step 1, and let U 
be the event that A does not stop in Step 1 or 2. Finally let G be the event that 
the public key produced, p k ,  and v iewg  are in the set Goud, as defined before 
Definition 2.2. 

The extended privacy amplification theorem from [l] deals with collision en- 
tropies, instead of Shannon entropies. The collision entropy, or Renyi entropy, of 
a distribution is defined as minus the logarithm base 2 of the sum of the squared 
probabilities. For a binary distribution, like that of h(n(sk)), with probabilities 
p and 1 - p ,  the collision entropy is 

W P )  = - %(P2 + ( 1  - P)". 

This is a value between 0 and 1, like the Shannon entropy. I t  is therefore natural 
t o  define the collision information to be 1 - R. 

Let 12 denote the collision information obtained by 8 about h(n(sk) )  during 
the commit protocol, and let EB be its expected value, taken over the random 
choices of A. For an event X, E i ( X )  denotes the expected information given 
that  X occurs. Then we have 

Eh = P~ob[7U]Ei , (7U)  + Prob[U, G]Ei,(U, G )  + Prob[U, 7G]Eh(U, 1G)  
5 0 + Prob[U, G]Eh(U, G) + P T O ~ [ A C C ,  ' G ]  
5 Prob[U, G]Eh(U, G )  + 2 - 0  

by the security for the signer, and since A does not reveal anything at all if the 
commit protocol is aborted in Step 1 or 2. 

The rest of the proof proceeds in 3 parts: We first show that in most cases, 
the best guess at the significant part of the secret key from the point of view of 8 
still has a rather small probability of being correct. Secondly, we derive with the 
extended privacy amplification theorem that in most cases, an enemy has very 
little collision information about h(n(sk) ) .  Finally, we derive an upper bound on 
the advantage an enemy has in guessing the content of the commitment. 

Part 1 Let SK be the random variable denoting the secret key of A,  and 
let skmaz denote a secret key such that tc(skrnar) has maximal probability given 
v := ( p k , v i e w g ) ,  U and G. We now show that on average over the possible v's 
and given U and G, this maximal probability is upper bounded: 

Prob[&(SK) = ~ ( s k , , , )  I U, G] 5 2-"P~ob[U, GI-'. (*) 

For this, it is sufficient to  show that 

PTU~[K(SK)  = ~ ( s k ~ ~ ~ ) ,  U, G] 5 2-". 

To do this, we consider the following attack by B* on the FSS scheme. 
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1. 3' executes the key generation protocol with A in the same way as B did. 
2. B' finds skmoz and uses it to  make a signature on the message "0". 

Let F denote the event that A fails to  prove this forgery. Note that the distri- 
bution of the keys after Step 1 of this attack and of the commit protocol are 
equal. Furthermore, U c Acc, and whenever Acc and K ( S K )  = &(skmaz) occur, 
U implies F by definition of the almost unique secret key property. This gives 
us 

Prob[n(SK) = fi(skm,,), U, GI = P T O ~ [ K ( S K )  = s(skmaZ), U, G, ACC] 
5 Prob[F, n (SK)  = IC(SIC~~~) ,G ,ACC]  
= Prob[F, ACC, K ( S K )  = K ( s ~ , , Z )  I G]Prob[G] 
5 Prob[F I GI 
5 2 - p .  

The final inequality follows from the security for the signer of the FSS scheme. 
This finishes the proof of (*). 

Now let V be a random variable denoting v = (pk,viewb) and M the set 
of cues  where the probability of the best guess is much larger than on average, 
and also the event that such a case occurs: 

M := {V I Prob[rt(SK) = &(SIC,,,) I G, U, V = V] >_ Prob[U, G]-'2-"/2}. 

By Markov's rule, the average inequality (*)'implies that 

ProbIM I U, GI 5 2-"/2. 

We split the expected information according to  whether A4 occurs or not. 

Part 2 Whenever v $ M, the extended privacy amplification lemma, Lemma 
5.2 below, immediately implies that the information Eg(U, G, V = v) is small: 

Eg(U, G ,  V = V )  5 Prob[U, G]-l2-"/'- < Prob[U, G]-'22-"'2. 

Substituting this into the two equations above where Eg was partitioned gives 

Ejj(U, G) < 2-''z + C Prob[V = ZJ 1 U, G ] P T o ~ [ U , G ] - ~ ~ ' - ~ / '  

2 
In 2 

V t Z M  

< - 2-"/' + Prob[U, G]-122-"/2 

and thus 
Eg 5 Prob[U, G]2-Ol2 + 22-u/2 + 2-" < 23-4/2. 
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Part 3 Let Bias be the random variable denoting B's  advantage p in guess- 
ing h(n(sk)). (This also bounds the advantage in guessing b . )  From the definition 
of the collision entropy for binary distributions one sees 

1 R( 1/2 + /3) = - log, (i + 2P2) = 1 - log2 (1 + 4/37 5 1 - 402 

for 1/31 <_ i, i.e., 4p2 5 1. This implies 

D l  ,J l-R(1/2+@). 1 

Thus we have shown the following pointwise inequality between the random 
variables Bias and the collision information I 2  : 

1 
2 

Bias 5 -a. 
Applying the general formula E(X) 5 d m  to X = yields 

1 
E(Bias)  5 Z E ( f i )  5 i\lEilB) = :& < P - 5 .  

In the last inequality, the result of Part 2 was used. 

that  the commitment scheme has the security property. 
As the security parameter of the FSS scheme, CT, equals 4k + 4, this shows 

Remark: From the proof of the security property, it is clear that  we do not need 
to  hash all the way down to a 1-bit value to  wipe out the enemy's information. 
Therefore we can commit t o  more than one bit in one commitment. 

Lemma 5.2 Let S be a random variable with a given distribution { p i  1 i = 
1,2,. . . ) 2")  on the set of n-bit strings. If there is an a > 0 such that pi 5 a 
for each i, and a random 2-universal hash function mapping n bits to  1 bit is 
chosen, then the expected collision information about the image h(S)  is at most 

2 a-. In 2 

Proof: Let N = 2". Then 
N N 

i = l  i= l  

Hence the collision entropy R of the given distribution is 

R 2 - logz(a). 

Theorem 5 of [l] shows that if an unbounded enemy knows at most I bits of 
collision information about an n-bit string (defined as n - R), and if the string is 
hashed down to n - 1 - s bits, the enemy's expected collision information about 
the result is at most 2-8/ ln(2) bits. In our case, we hash down to 1 bit, and thus 
s = R - 1 2 - log2(a) - 1. Hence, the eneniy's expected collision information E 
about h(S )  is n 
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6 Equivalence 

The FSS scheme constructed from bit commitments in Section 3 does not neces- 
sarily have a unique secret key property: for example, more than one bit string 
may be acceptable as opening a commitment as a 1. In the following, we modify 
the scheme so that it has at least the almost unique secret key property. To- 
gether with Theorem 5.1, this yields the equivalence between FSS schemes with 
the almost unique secret key property and statistically hiding bit commitment 
schemes with non-interactive opening and public verification. The only changes 
to  the protocol are: 

- In key generation, A makes an additional commitment to  every bit in the 
strings that  will open the commitments cb,;. These secondary commitments 
belong to  the public key, and the strings that open them belong to  the secret 
key. 

- The security parameter CT is increased a little (since the secondary commit- 
ments may give a small amount of extra information). 

It is clear that this scheme is still secure. For the almost unique secret key 
property, Fits (sk ,pk)  is defined to mean that the strings in sk open all the 
commitments of p k  correctly, and the significant part, & ( S I C ) ,  of sk ,  consists of 
those strings that open the original commitments. Clearly, finding two secret keys 
fitting the same public key, but with different n-images, would mean opening at 
least one secondary commitment in both ways. Moreover, two secret keys ski, skz 
with ~ ( s k l )  = ~ ( s k z )  obviously lead to the same signatures. 

7 Conclusion 

We have shown that the existence of FSS schemes with the almost unique secret 
key property is equivalent to  the existence of bit commitment schemes with non- 
interactive opening. In addition, we have shown how to construct efficient FSS 
schemes from any collision-intractable hash function. 
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